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Standard and general completeness of modal

many-valued logics

Amanda Vidal

Arti�cial Intelligence Research Institute,

Spanish National Research Council

amanda@iiia.csic.es

Abstract. Keywords: modal logics · many-valued logics · algebras.

In this talk we will introduce and explore the similarities and di�erences
between the modal logics evaluated over standard algebras and those over arbi-
trary algebras of the corresponding varieties, for some well-known fuzzy logics.
In particular, we will present results a�ecting both the local and the global
logical entailments of the modal Gödel, �ukasiewicz and Product logics, under-
stood both as the logics arising from their respective standard algebra (namely,
over [0,1]) and from their generated varieties. These coincide at the proposi-
tional level, but we will see (might) have di�erent behaviors when we move to
their modal extensions. The semantics of the above modal many-valued logics
is based on classical frames (i.e., where the accessibility relation is as in the
classical modal logic). Henceforth, their adaptation to a multi-modal case with
the usual axioms from dynamic logic would allow for the modeling of problems
analogous to those of dynamic logic but o�ering the possibility of working with
formulas valued on the corresponding many-valued algebras.



Kleene Algebras for Weighted Programs

Igor Sedlár[0000−0002−1942−7982]

Czech Academy of Sciences, Institute of Computer Science
Prague, The Czech Republic

sedlar@cs.cas.cz

Abstract. Keywords: Kleene algebra with tests · Program semantics
· Weighted programs.

Weighted programs [1] are a recent generalization of probabilistic programs
which can also be used to represent optimization problems and, in general, pro-
grams whose execution traces carry some sort of weight. In this talk, I will
discuss semantics for weighted programs, and a generalization of Kleene alge-
bras with tests [3] abstracting this semantics. In particular, I define a language
model based on weighted sets of guarded strings, and a relational model based
on weighted relations on a state space. Both kinds of semantics are special cases
of a more general functional semantics based on functions from multimonoids to
quantales [2]. The proposed generalization of Kleene algebras with tests adds a
third sort to programs and Boolean tests, corresponding to the algebra of weights
[4]. Several open problems will be discussed, including questions of completeness,
complexity, and relation to weighted automata.
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Learning by Intervention in Simple Causal
Domains

Katrine Bjørn Pedersen Thoft and Nina Gierasimczuk

Department of Applied Mathematics and Computer Science
Technical University of Denmark

Abstract. We propose a framework for learning dependencies between
variables in an environment with causal relations. We assume that the
environment is fully observable and that the underlying causal struc-
ture is of a simple nature. We adapt the frameworks of the (epistemic)
causal models from [17,4], and propose a model inspired by action learn-
ing [6,7]. We present two learning methods, using formal and algorith-
mic approaches. Our learning agents infer dependencies (atomic formulas
of Dependence Logic) from observations of interventions on valuations
(propositional states), and by doing so efficiently, they obtain insights
into how to manipulate their surroundings to achieve goals.

Keywords— causality; causal models; dependence models; dynamic epis-
temic logic; action model learning; single-agent learning; formal learning; artifi-
cial intelligence

1 Introduction

In this paper, we set the stage for a model of learning dependencies of cause-
effect relationships. Our perspective is formal and algorithmic, and as such it
contributes to the architecture of artificial agents. Causal inference is also of
paramount importance in epistemology, in philosophy of science (as discovering
cause-effect relations is one of the fundamental tasks of empirical sciences), and
in cognitive science. The concept of causality appears in cognition quite early
in human development—children as young as the age of six months are able to
identify some categories of cause-effect relations [16].

Studying causation formally is very challenging, as it can be easily confused
with correlation. Pearl [18] proposes three practical levels of analysis, the so-
called ‘Ladder of Causality’: prediction, manipulation, and counterfactuals. On
the first rung, prediction, agents can only observe the environment and make
predictions of outcomes, while the second rung agents can make predictions of
how their actions affect the environment. In the third and last rung of the ladder,
counterfactuals, agents can imagine hypothetical scenarios in the environment
and predict outcomes. In this paper we focus on the second level, the level of
manipulation (or intervention) . We consider an agent executing actions in an en-
vironment that functions according to an unknown causal structure. The agent’s
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goal is to learn (infer) the dependencies between variables in the environment.
While our causal structure says explicitly how the values of certain variables in-
fluence the values of other variables, dependency structure is less specific—it only
points to the existence of a relationship between variables, without specifying its
nature exactly. Our methodology borrows from modal logic-based interpretation
of learning [9], and is closely related to the learning of Dynamic Epistemic Logic
action models [6,7], where agents learn to predict the effects of actions, but they
do not address the dependence between variables explicitly. In the present paper
we draw inspiration from the recent work on (epistemic) causal models [4] and
Dependence Logic [20]. In fact, our agent learns atomic Dependence Logic for-
mulas describing sets of valuations compliant to the causal structural functions
of the domain.

2 Modelling simple causality

According to Von Wright, two propositions are causally connected if we can in-
fluence one by manipulating the other. He calls this type of causal connection
manipulative causation, as it points to an essential connection between causa-
tion and action [21]. Recent work in developmental cognitive psychology reveals
that children indeed use information from their interventions to correctly dis-
ambiguate the structure of a causal chain [15]. We will adopt these intuitions in
our model and distinguish a special kind of manipulable variables, the value of
which can be directly changed by the agent.

Example 1. Consider a simple train-track control set-up, see Figure 1. The agent
finds herself in an environment with two levers, a red one (r) and a blue one (b),
and two train tracks. The underlying causal relationships are as follows: pulling
down both levers causes the tracks to merge (m), pulling down the red lever
causes the traffic to stop (t).

Fig. 1. The train-track control domain

The causal models of Pearl [17] distinguish between the causally independent
exogenous variables (like r and b in our example), and the causally dependent
endogenous variables (like t and m). In this paper we will make several simpli-
fying assumptions. We will take the set of exogenous variables to be equal to
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the manipulable variables, i.e., the agent can manipulate all and only exogenous
variables. Moreover, our variables are binary—they only take values from the set
{0, 1}. Finally, we only consider simple causality of chains of length 2, i.e., en-
dogenous variables cannot affect other endogenous variables. We will discuss the
consequences of lifting these assumptions in the concluding remarks, in Section
6.

Our starting point is the notion of a causal frame, which codes the structure
of the environment: the variables and how they truth-functionally affect each
other.

Definition 1 (Simple Causal Frame). Let U = {u0, . . . , un−1} and V =
{v0, . . . , vk−1} be (disjoint) sets of exogenous and endogenous variables, respec-
tively. A simple causal frame over U and V is a tuple C = (U, V,F), where F
assigns a map fvj : {0, 1}n → {0, 1} to each endogenous variable vj ∈ V , i.e.,
for each valuation of all exogenous variables in U , fvj determines the value of
the endogenous variable vj.

Given (disjoint) sets of exogenous and endogenous variables U and V , we
define CF(U, V ) as the set of all simple causal frames over U and V .

Direct causal influence of a variable u over a variable v requires that there exists
a valuation within which just the change of the value of u triggers a change of
the value of v.

Definition 2 (Causal Influence). Let C = (U, V,F) be a simple causal frame.
We say that an endogenous variable vj ∈ V is directly causally influenced by
an exogenous variable ui ∈ U if and only if there is a valuation g : U → {0, 1},
such that:

fvj (g(u0), . . . , g(ui), . . . , g(un−1)) 6= fvj (g(u0), . . . , 1− g(ui), . . . g(un−1)).

A particular ‘instance’ of a causal frame, i.e., a frame with a distinguished
valuation, will be called a causal model.

Definition 3 (Simple Causal Model). A simple causal model is a tuple C =
(U, V,F , a), where: (U, V,F) is a causal frame, U = {u0, . . . , un−1} and a :
U ∪ V → {0, 1} is a valuation that complies with F , i.e., for all vj ∈ V , a(vj) =
fvj (a(u0), . . . , a(un−1)).

Causal models allow for modelling interventions: by manipulating the values of
variables the agent ‘jumps’ between causal models, as the distinguished, actual
valuation changes. As mentioned before, in our framework (all and only) ex-
ogenous variables of the model can be manipulated. This leads to the following
notion of intervention, adapted from [4].

Definition 4 (Intervention). Given U = {u0, . . . , un−1} and V , a simple
causal model C = (U, V,F , a), with ui ∈ U , and x ∈ {0, 1}, the intervention
is Cui:=x = (U, V,F , aui:=x), where aui:=x : U ∪ V → {0, 1} is such that:

aui:=x(y) =





x if y = ui;

a(y) if y ∈ U \ {ui};
fv(a(u0), . . . , a(ui) := x, . . . , a(un−1)) if y = v ∈ V.
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Note that an intervention need not change the existing valuation, i.e., when the
newly assigned value is the same as the old one. Such interventions will be called
trivial.

Intuitively, an intervention will only change the value of the affected exoge-
nous variable itself and, in accordance with F , all endogenous variables that are
directly causally influenced by this exogenous variable.

3 Modelling simple dependence

One symptom of causation is dependence between variables. When talking about
dependence, several existing paradigms should be mentioned. The first one, In-
dependence Friendly Logic [14] is an extension of First-Order Logic, where inde-
pendence is treated on the quantifier level. Jouko Väänänen’s Dependence Logic
(DL, [20]) and its propositional version [22] treat dependencies on the atomic
level of formulas. Generalizing Tarski’s semantics, it’s interpreted on so-called
‘teams’, i.e., sets of valuations. For completeness, it is also important to mention
the recently proposed logic of functional dependence [1], which addresses two
basic kinds of dependence: the global and the local one.

In this paper, we are interested in studying dependence between boolean
variables. We adopt a perspective close to that of DL, where dependence is
expressed using the dependence atom =(x1, . . . , xn, y) read as: the value of y
depends on the values of x1, . . . , xn. Formally, the meaning of this expression
is defined within team semantics in the following way: we say that a set of
valuations X is of type =(x0, . . . , xk, v) iff for all a, b ∈ X we have that if a(x0) =
b(x0), . . . , a(xk) = b(xk), then a(v) = b(v).

Definition 5 (Simple Dependence Model). Let U and V be disjoint sets of
exogenous and endogenous variables, respectively. A simple dependence model
is a triple D = (U, V, F ), where F ⊆ P(U ∪ V ) is the smallest set such that for
each v ∈ V there is a unique U ′ ⊆ U with U ′ ∪ {v} ∈ F (we will refer to each
such element with Fv).

Given (disjoint) sets of exogenous and endogenous variables U and V , we
define DM(U, V ) as the set of all simple dependence models over U and V .

A dependence model can be seen as a coarser representation of causality.
It does not specify exactly how a given endogenous variable is influenced by
exogenous variables. Instead, it just lists the relevant exogenous variables that
determine it. There is hence many-to-one correspondence between causal frames
and dependence models, given by the following definition.

Definition 6. For any simple causal frame C = (U, V,F), the corresponding
simple dependence model is DC = (U, V, F ), where F consists of sets Fvj , one
for each endogenous variable vj ∈ V , that contains the variable vj itself, together
with all and only exogenous variables that directly causally influence vj in C.

Proposition 1. Let C = (U, V,F) and DC = (U, V, F ), with Fv ∈ F . If we have
that Fv = {x0, . . . , xk, v}, then the set of valuations that comply with F is of type
=(x0, . . . , xk, v).
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Proof. Take C = (U, V,F). Assume that inDC = (U, V, F ), Fv = {x0, . . . , xk, v}.
We need to show that the set of valuations that comply with F is of type
=(x0, . . . , xk, v), i.e, that for any two valuations a and b if a(x0) = b(x0), . . . ,
a(xk) = b(xk), then a(v) = b(v). Let us take two arbitrary valuations a and b that
comply with F , and for contradiction assume that a(x0) = b(x0), . . . , a(xk) =
b(xk), but a(v) 6= b(v). By the assumption of compliance with F , we have that
a(v) = fv(a(u0), . . . , a(un−1)), and b(v) = fv(b(u0), . . . , b(un−1)), so there must
be a subset Y ⊆ U \ {x0, . . . , xk}, such that for all u ∈ Y , a(u) 6= b(u). We
will argue that then there exists a single variable u′ ∈ Y that directly causally
influences v (but u′ /∈ {x0, . . . xk}, which will give contradiction). To this end we
need to construct a valuation g : U → {0, 1}, such that

fv(g(u0), . . . , g(u′), . . . , g(un−1)) 6= fv(g(u0), . . . , 1− g(u′), . . . , g(un−1)).

Let Y = y0, . . . , y`. We construct a sequence of valuations g0, . . . , g` inductively
in the following way:

g0(x) := a(x)

gi+1(x) :=

{
1− gi(x) if x = yi;

gi(x) otherwise.

The valuation we seek is the gi of the smallest i such that:

fv(gi(u0), . . . , gi(yi+1), . . . , gi(un−1)) 6=fv(gi(u0), . . . , 1− gi(yi+1), . . . , gi(un−1)).

Such an i exists, since g` = b. ut
We are now well-equipped to introduce our learning framework. Our agents

reside in a causal frame. By manipulating the values of variables in the frame,
they ‘jump’ from one causal model to another. By observing the changes (pairs
of such models), they learn which variables depend on each other. Storing all
causal relations explicitly would require a lot of memory, so we only require they
identify the (coarser) dependence model corresponding to the causal frame they
are in. We argue that this concise partial knowledge is already useful enough
to interact with the environment in an informed way. Knowing the dependence
model corresponding to the causal frame, by Proposition 1, amounts to know-
ing the type of the team (expressed as an atomic formula of dependence logic)
complying to the rules of the causal frame being learned.

4 Learning dependencies in causal frames

We will now move on to learning dependence models that correspond (in the
strict sense defined above) to the causal frames the agent intervenes with. Let
C = (U, V,F) be a simple causal frame, with U = {u0, . . . , un−1} and V =
{v0, . . . , vk−1}, i.e, there are n exogenous (manipulable) variables, and k en-
dogenous variables. A simple causal model C = (U, V,F , a) can be understood
as a state of the simple causal frame C given by the valuation a:

sa = (a(u0), . . . , a(un−1), a(v0), . . . , a(vk−1)),
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i.e., a binary sequence of length n + k of values of all variables in U ∪ V
under the valuation a. The enumeration order of variables in observations is
the same and known to the agent throughout the learning process. Given the
causal frame C = (U, V,F), we define the set of all possible states of C as
SF = {sb | b complies with F}.

Our learning function will output a dependence model given a finite sequence
of observations of interventions, i.e., pairs (sb, sc) ∈ SF × SF :

L : (SF × SF )∗ → DM(U, V ) ∪ {↑},

where ↑ stands for ‘undecided’. Each intervention pair in an observation shows
the state of the domain before and after an intervention, as in the learning model
proposed in [6]. We thus need not impose a specific ordering on the observations
for the learner to identify the dependence model.

The long-term behaviour of the learner will be defined with respect to a
stream ε ∈ (SF × SF )∞, which is an infinite sequence of observations of inter-
ventions (repetitions are allowed). For n ∈ N and a stream ε we use the following
notation: ε[n] is the initial segment of ε of length n + 1; εn is the n-th element
of ε.

Definition 7 (Stream and sequence for C). Let C = (U, V,F) and β is a
finite sequence or a stream of observations of interventions, we will say that β
is for C if:

1. for all n ∈ N, if βn = (sb, sc) then there is ui ∈ U and x ∈ {0, 1} such that
c = bui:=x;

2. for all ui ∈ U and for all x ∈ {0, 1} there is an n ∈ N such that βn = (sb, sc)
with c = bui:=x.

In other words, a stream for a frame lists all possible interventions and their
effects, and nothing more. As such, it gives perfect conditions for learning.

We will work with a very strict learnability criterion: finite identifiability—we
will require that the output is a model that accurately describes the dependence,
and it is obtained in finite time, with certainty. In the computational context
this kind of learner is expressed as a Turing machine that, while receiving more
and more data, at some finite step outputs the correct answer and then halts.
This means that the moment of convergence to the right hypothesis is decidable.
To capture this in a more abstract way, we will here use the concept of one-shot
learning—we require that for our problems there must be a learner that is at
most once defined, meaning that for every stream ε, and any n, k ∈ N with n 6= k
either ε[n] =↑ or ε[k] =↑, and that the sole proper conjecture of the learner cor-
rectly describes he structure in question. This is technical characterisation of
exact learning with certainty. Even though we could define some the interme-
diate, work-in-progress conjectures or best guesses, this learner, as long as it is
uncertain, responds with ↑ (for discussion of the concept of finite identifiability
and once-defined learners consult [10] and [8]).
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Definition 8. Given a simple causal frame C and a learner L, we say that L
finitely identifies DC on a stream ε for C if L is at most once-defined on ε, and
there is an n ∈ N such that L(ε[n]) = DC. L finitely identifies DC if it finitely
identifies DC on every stream for C.

In the remainder of this section, we will present two methods for finitely iden-
tifying dependence between variables. The first concerns the simple case when
a variable depends on at most one other variable in the domain (single-variable
causality), while the second allows variables to depend on multiple other vari-
ables (multi-variable causality).

4.1 Single-variable causality

Single-variable simple causality restricts our structures to only those causal
frames in which every endogenous variable is causally influenced by exactly
one exogenous variable. As we will see, this very simple setting allows us to
lift the assumption that the agent know the difference between exogenous and
endogenous variables at the start of the learning process.

We will first define a simple update function, which will work on a hypothesis
space, hdep = {{x, y} | {x, y} ⊆ U ∪ V & x 6= y}. Let (s, t) ∈ SF × SF , we
define hdep � (s, t) = {{x, y} | s(x) = t(x) iff s(y) = t(y)} and, inductively, for
σ ∈ (SF ×SF )∗, hdep � σ · (s, t) = (hdep � σ) � (s, t).1 The criteria for eliminating
an element of hdep (see proposition 2) combined with the assumption of streams
being sound and complete, means that all elements containing only exogenous
variables will be eliminated during the learning process and we will thus allow
the learner to build a hypothesis space with all possible pairs of variables to
avoid an unnecessary pre-processing procedure or additional assumptions.

Proposition 2. Let C be a simple single-variable causal frame and let ε be a
stream for C. DC is finitely identified by the function:

Ldep(ε[n]) =

{
hdep�ε[n] if |hdep�ε[n]| = |V |,
↑ otherwise.

Proof. Take a C = (U, V,F), and a stream ε for C. We need to show that for
some n: 1) |hdep�ε[n]| = |V |, and that 2)DC = (U, V, hdep�ε[n]). Take n such that
ε[n] is a sequence for C (as specified in Definition 7). For 1), by the assumption
of single-variable causality, every endogenous variable v is influenced by exactly
one exogenous variable u, so for all exogenous u′ 6= u, ε[n] will contain evidence
of intervention on u′ that did not change the value of v, so such doubletons
{u′, v} will have been eliminated from hdep. Since this is the case for each v ∈ V ,
indeed |hdep�ε[n]| = |V |. For 2), we need that each element {u, v} ∈ hdep�ε[n]
contains all and only those exogenous variables that directly causally influence
v. This is clearly the case. ut

Let us apply this learning function to a simple example.
1 Here ‘·’ stands for concatenation of sequences.
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Example 2. We now consider a case where the action of pulling the blue lever
has no effect, as represented in the state space in Figure 2. Formally, we have

Fig. 2. The train track control domain

U = {r, b}, V = {t}, the propositions are presented in the following order
(r, b, t). The learner will start by building the hypothesis space from U ∪ V ,
hdep = {{r, b}, {b, t}, {r, t}}. The stream of observations starts with ε[0] =
((0, 0, 1), (0, 1, 1)), which corresponds with intervention b := 1 (pulling down
the blue lever). Then, hdep�ε0 = {{r, b}, {b, t}, {r, t}}. After observing ε0, the
learner has correctly identified the dependence {r, t}.2

4.2 Multi-variable causality

Let us now consider the case where some endogenous propositions depend on
multiple exogenous propositions. First we will show that the method from the
previous subsection will not suffice.

Example 3. Recall the train track control example from Figure 1; in order to
merge the tracks, both levers must be pulled. The hypothesis space according to
the previously defined method would be:

hdep = {{r, b}, {b, t}, {r, t}, {r,m}, {b,m}, {t,m}}.

Let us fix the order of propositions as (r, b, t,m). Let the start of the stream be:
ε0 = ((1, 0, 0, 0), (0, 0, 1, 0)), and ε1 = ((0, 1, 1, 0), (1, 1, 0, 1)). The first transition
results from the intervention r := 0 and the second one from r := 1. The learner
proceed as follows:

hdep�ε0 = {{r, b}, {b, t}, {r, t}, {r,m}, {b,m}, {t,m}}.

hdep�ε1 = {{r, b}, {b, t}, {r, t}, {r,m}, {b,m}, {t,m}}.
Here our learner is only able to identify the dependence between {r, t}, as all

possible pairs including b are ruled out by the second observation. This clearly
shows that our learner is unable to identify dependencies where one proposition
in our domain is dependent on multiple other propositions.
2 Note that the same result is obtained by the learner for any sound and complete
stream for the causal frame of this particular domain.
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As shown in Example 3 our learning function works by eliminating possible
dependencies. We could extend the hypothesis space to include all possible com-
binations of dependence in U ∪ V , but this becomes a rather tedious process
when U ∪ V is large. We will therefore consider an additive approach to our
learning problem. We will now assume that our learner distinguishes between
U and V , that the manipulable variables are known to the learner, and that
they coincide with the set U . The learning algorithm for learning multi-variable
dependencies (Algorithm 1) will use this knowledge.

Algorithm 1 vi−Dependence(vi, k, ε[`])
Input vi (endogenous variable),
Input k (is the number of exogenous variables),

ε[`] (finite sequence for C)
Output f (dependence set of vi)

1: f = ∅
2: for j = 0, . . . , ` do
3: s = first element of εj
4: s′ = second element of εj
5: if (n+ i ∈ s#s′) then
6: f.add(s#s′)

7: f.remove({` | ` > n})
8: f.add(n+ i)
9: return f

Given the set V with |V | = k, a stream ε for C, and n ∈ N, the learner will,
for each v ∈ V identify the dependence set Fv of DC. This is done using the
vi−Dependence(vi, k, ε[n]) procedure shown above. When each individual v ∈ V
has been investigated, the learner can build the full set F of DC.

Let us briefly explain the pseudo-code Algorithm 1. First let us fix the enu-
meration of all variables starting with all n exogenous variables and following
with all k endogenous variables {x0, . . . , xn−1, xn, . . . , xn+k−1}. The algorithm
constructs the dependence set for a given endogenous variable vi, that in this
enumeration has the index n + i. For each observation of intervention (s, s′) in
ε[`] it computes the set of indices of variables that changed their value during
this intervention, i.e., the set s#s′. If the index of our variable vi (i.e., n+ i) is
in that set, we add to our dependence set all indices in s#s′. After this has been
performed for all ` steps, the index of vi (i.e., n+ i) is added to the dependence
set.

Let us now apply the vi-Dependence on the train track control Example
3. The elements of the given observation stream ε[4] are shown in each of
the Tables 1 and 2, and they result from the following interventions: r := 0,
r := 1, b := 1. We order the propositions in the following way: (r, b, t,m),
k = 2. The procedure of vi−Dependence(m, 2, ε[4]), is shown in Table 1, and of
vi−Dependence(t, 2, ε[4]) in Table 2. The outcome of vi−Dependence(vi, k, ε[n])
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Table 1. vi−Dependence(m, 2, ε[4]).

j εj fm
0 ((1, 0, 0, 0), (0, 0, 1, 0)) ∅
1 ((0, 1, 1, 0), (1, 1, 0, 1)) {r,m}
2 ((1, 0, 0, 0), (1, 1, 0, 1)) {r, b,m}
3 ((0, 0, 1, 0), (0, 1, 1, 0)) {r, b,m}

Table 2. vi−Dependence(t, 2, ε[4]).

j εj ft
0 ((1, 0, 0, 0), (0, 0, 1, 0)) {r, t}
1 ((0, 1, 1, 0), (1, 1, 0, 1)) {r, t}
2 ((1, 0, 0, 0), (1, 1, 0, 1)) {r, t}
3 ((0, 0, 1, 0), (0, 1, 1, 0)) {r, t}

on both endogenous propositions of the domain t and m, is then the two de-
pendencies {r, t} and {r, b,m}, which can be expressed in DL as =(r, t) and
=(r, b, t).

Theorem 1. Let C = (U, V,F) be a simple multi-variable causal frame, vi ∈ V ,
|V | = k, and ε[n] a sequence for C. vi−Dependence(vi, k, ε[n]) outputs the set
Fvi in DC.

Proof. Let DC = (U, V, F ), Fv ∈ F , and ε[n] be a sequence for C. Assume that
the procedure executed for v outputs F ′, we need to show that F ′ = Fv, i.e.,
for all x ∈ U ∪ V , x ∈ F ′ iff x ∈ Fv. For x ∈ V , it is clearly the case since the
only endogenous variables in F ′ (by line 7 and 8 in Algorithm 1) and Fv (by
definition of DMs) is v. It remains to show that for all x ∈ U , x ∈ F ′ iff x ∈ Fv.
If x ∈ F ′, then there is an intervention (s, s′) in ε[n], such that the index of v
is in s#s′ and the index of x is in s#s′, which means there is a valuation on
U such that the intervention (solely) on x changes the value of v. So, x directly
causally influences v, so x ∈ Fv. For the other direction, assume that x ∈ Fv,
which means that x directly causally influences v in C. Since ε[n] is for C, it
includes an observation ε` (for some ` < n) of an intervention that supports
that fact. At that iteration `, x is added to F ′ (lines 5, 6 in Algorithm 1). ut

Corollary 1. If C be a simple multi-variable causal frame, then DC is finitely
identifiable.

Proof. As vi−Dependence(vi, k, ε[n]) correctly identifies the dependence set
of each vi ∈ V , using this algorithm for all v ∈ V will identify the dependencies
of DC. ut

5 Complexity

Dependence models can be viewed as (non-lossless) compression of causal frames.
There are 2|U∪V | − 1 possible non-empty combinations of variables U and V ,
which is an upper bound on the number of possible F s, i.e., possible dependence
models over U ∪V . On top of that causal frames will allow for each combination
2|U∪V | (binary) valuations over U and V , giving a 2|U∪V |·2

|U∪V | − 1 of possible
Fs. This compression is a vast improvement in the memory needed to represent
the structure of the causal relations. As cognitive and artificial agents have very
limited memory, the dependence models seem to be a more likely way in which
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information about causation is stored. Arguably, in many natural scenarios it
is enough to know which buttons and switches control which lamps, the exact
relationship between their configurations is less important for efficient interaction
with the environment.

Let us consider the time and space complexity of our learning procedures:
Ldep(ε[n]) and the vi− Dependence(vi, k, ε[n]) learner. Ldep(ε[n]) is defined in
terms of the hypothesis space hdep update procedure. We will therefore start by
analyzing hdep. As the space complexity of hdep is upper-bounded by the number
of pairs in U ∪ V ,

(|U∪V |
2

)
, O(

(|U∪V |
2

)
) is the space complexity of Ldep(ε[n]) as

well. To analyze the time complexity of Ldep, we could either choose to ignore
repetitions in ε[n] or assume that all observations are distinct. In either case,
the time complexity of Ldep will be defined in terms of the number of distinct
pairs of observations in ε[n] the learner must receive to learn F . In order to
exclude all possible dependencies in U ∪V except F , at most |U ∪V |−2 distinct
observations are needed, as the learner will require to see all propositions not in
F change value independently in order to be certain if the dependence is indeed
F . This gives Ldep(ε[n]) time complexity of O(|U ∪ V |).

For the vi−Dependence(vi, k, ε[n]) learner, the space complexity for every
vi ∈ V is O(|U ∪ V |), as the learner will in the worst case not be able to add
propositions to the vi−Dependence(vi, k, ε[n]). For the total set of dependen-
cies V the learner will have a space complexity of O(|U ∪ V |2). The time of
vi−Dependence(vi, k, ε[n]) complexity will also be O(|U ∪ V |) for each v ∈ V ,
as this is the maximum number of distinct observation pairs in ε[n] the learner
needs to learn the dependence of v. In total the time complexity will thus be
O(|U ∪ V |2).

6 Conclusion and discussion

In this paper we have set the stage for a clear and comprehensive framework
of learning by intervention in causal frames. We have proposed two learning
methods: a learning function to handle finite identifiability of single-variable
simple dependence and a learning algorithm to handle a more general multi-
variable notion of dependence. We have presented two proposals for an exact
learner of cause-effect relations in graphical models, in the style of [12], in recent
years combined with epistemic modal logic (for an overview, see [9]). This departs
from the traditional probabilistic learning methods as shown in the overviews
of [11] and [19]. One among many motivations for an exact learners is that we
for some environments it may be extremely costly or impossible to obtain the
amount of data needed for statistical models to perform well, and thus we need
some qualitative methods to discover the causal relations in such environment.

Related work An interesting connection is that with logics of dependence. As
our learners infer dependencies between variables without uncovering the exact
way in which variables causally influence each other, they can be seen as ways
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to learn dependence atoms. Interestingly, team semantics has recently been ap-
plied to describe interventionist counterfactuals and causal dependencies in [3].
Introduced therein causal teams bear resemblance to our dependence models.
This connection is worth pursuing further.

Since our learners converge to knowledge of a certain causal structure, a
natural question is how our setup relates to the recently developed epistemic
logic of causality LPAKC [4]. The language LPAKC contains expressions ‘X=x’
for interventions (the variable X has value x), ‘[X=x!]’ for announcements (or
observations) of interventions, and a knowledge operator ‘K’. LPAKC is inter-
preted over epistemic causal models—the following is a version of that concept
suited to our simple causal models:

Definition 9 (Simple Epistemic Causal Model). A simple epistemic causal
model over a domain is a tuple E = (U, V,F , T ), where U , V , and F are as in
simple causal models; T is a non-empty set of valuations complying with F .
The uncertainty of the agent in an epistemic causal model of [4] ranges only over
valuations that comply to the set of structural functions F , which means that
the agent’s knowledge always accounts for the true causal structure of the model.
However useful this restriction might be for constructing a sound and complete
logic of interventions [4], it does not fare well with our learning scenario. To model
an agent learning an unknown domain we must allow that her uncertainty (at
least initially) ranges also over valuations that might not comply with F . In the
sequel of the present paper we want to extend the framework of [4], to allow
for the uncertainty of the agent to include valuations that do not comply to a
given set of structural functions (as is especially clear in the case of Ldep(ε[n])
in Section 4.1). Our learning condition could then be expressed with the use of
this new language in a way similar to that in which learnability is expressed
in Dynamic Logic for Learning Theory [2]: given a causal frame, starting in a
given model there is a sequence of interventions after which the agent knows
the underlying causal structure, i.e., for all variables the agent knows which are
directly causally related to each other (with the use of  operator in LPAKC
[4]).

Possible extensions The directions for further work are numerous. The first group
of topics concerns the relaxation of our simplifying assumptions, and tackling the
full complexity of causal frames in the context of learning. Our current methods
will identify the topologies show in Figure 3. Due to the restriction that only
exogenous variables can causally influence endogenous variables, chains (of at
least length two) and confounders will not be identified by our learners. It would
therefore be a natural next step to extend the methods to include these two
topologies as well as other more complex causal relations. One of the challenges
to achieve this is to enable the learner to distinguish between a chain and a fork
given a sound and complete observation stream, which would impose further
restrictions on what it would be required of a stream to be sound and complete
for a given dependence. Another extension would be to allow our variables to
be non-binary, thus bringing us closer to real-world cause-effect relations. This
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relaxation should not add much complexity to our dependence learners, as they
are not concerned with the exact values of variables in a causal relation, but
simply the existence of a causal relation between variables. The main addition
to the existing algorithm will be an update of the completeness criteria of the
input stream, it must contain all possible valuations of the endogenous variables
to allow the dependence learner to eliminate relations to the exogenous variables.

u1

v1

u1

v1

u2 u1

v1 v2

u1

v1 v2

u2

Fig. 3. Topologies of simple causal models; a chain of length 1, collider, fork, mediator

Moreover, so far we assumed that the set of manipulable variables coincides
with the set of exogenous variables. It could be interesting to investigate the case
where M ⊂ U , and thus only some exogenous variables can be manipulated by
the agent. Next, we could relax the condition of full-observability. As most real-
world problems involve partial observability of the world, adapting our model
to handle this as well would be a natural next step [5]. Another assumption of
this paper is that the domain is static, which is a simplification with respect to
many real-world problems where things constantly change. Applying algorithms
known from dynamic graph theory might provide inspiration on how agents can
learn dependence efficiently in unknown dynamic domains.

In this paper, we have shown how agents can learn global dependence be-
tween propositions in an unknown domain, as defined in [1]. It would therefore
be interesting to investigate the perspective of local dependence model learning,
either to provide a subroutine for finding global dependence or as an independent
study of causation. Another approach is to look further into the properties of the
causal models presented in the Halpern-Pearl Actual Causality [13], where from
the set of structural functions a graphical representation of the causal struc-
tures can be build, which provides the agent with a visual representation of the
underlying causalities in their domain. We would like to check if such a repre-
sentation can be beneficial to a learner. The possibility of adding probabilities to
these causal networks could be another interesting approach to investigate the
prediction level of Pearl’s Ladder.
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Abstract. Belief revision and causality play an important role in many
applications, typically, in the study of database update mechanisms and
data dependence. New contributions on causal reasoning are continuously
added to the pioneering works by Pearl, Halpern and others. Though
there is a long tradition of modeling belief revision in philosophical logic,
the entanglement between belief revision and causal reasoning has not
yet been fully studied from a logical view. In this paper, we propose a new
formal logic for doxastic causal reasoning. With examples, we illustrate
that our framework explains the rational way of belief revision based on
causal reasoning. We further study the general properties of the logic. A
complete axiomatization, as well as a decidability result, will be given.
In addition, we believe our work will shed light on understanding the
relation between qualitative and quantitative approaches toward (causal)
dependence in general.

Keywords: Causal reasoning · Plausibility model · Causal model · Con-
ditional Doxastic logic.

1 Introduction

How to characterize the mechanisms of agents’ belief change is an important
question in the tradition of philosophy. In recent years, a lot of work, such as [4,
6] characterizes doxastic reasoning from a logical point of view. This research has
already gone beyond the borders of philosophy and has various applications in
computer science and artificial intelligence(see, e.g. [16, 8]). In those areas, there
are many examples of belief revision that involve the entanglement between
doxastic reasoning and causal reasoning. For instance, when an agent’s belief is
revised with a new proposition P , she should preserve her beliefs about those
facts that are causally independent of P . Yet there is no account of belief revision
in the literature that explicitly takes causal reasoning into account. This paper
will propose a formal framework to characterize belief revision based on causality.

The entanglement between doxastic reasoning and causal reasoning can be
best illustrated in the following example:
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Example 1 If John has a talent for science (T=1), then it is very probable that
he excels in both chemistry (C=1) and physics (P=1). Furthermore, given that
a college of science and engineering tends to prioritize applicants who are good
at chemistry or physics, it is very probable that John would be accepted into the
college (A=1).

The causal structure of this example can be represented by the graph below:

T

C P

A

Now, let us consider the independence of belief in this example. Intuitively,
the belief that John excels in physics is dependent on the belief that John excels
in chemistry. Given the information that John excels in physics, the agent is
more likely to believe that John excels in chemistry. The dependence results
from both doxastic reasoning and causal reasoning: John’s talent for science (T )
is a “significant” cause of John’s excellent ability in chemistry (C), given C, T
is very likely to be true.

Information update also plays an important role in the dependence of belief.
Suppose the agent is informed that John has no talent for science, then knowing
C will not increase the likelihood of P . So the information update of T breaks
the dependence of belief between C and P . Information updates can not only
break the dependence but also build the dependence. For instance, if the agent
is further informed that John is accepted by the college, then the agent tends to
believe that John excels in chemistry once given John is not good at physics.

As illustrated in Example 1, there is an intriguing entanglement between
the epistemic perspective and causal considerations in the agent’s reasoning:
the information update on the only common cause of two variables breaks the
dependence of belief between them; In contrast, the information update on the
common consequence creates new dependence of beliefs.

We are aware that in recent years a lot of effort has been put into the study
of probabilistic causal reasoning, such as the well-known causal Bayesian net-
work developed in [20, 18], and the semi-deterministic probabilistic causal model
proposed in [12]. In order to merge causal reasoning with doxastic reasoning,
we will propose a model which embeds the causal structure into an epistemic
model. In addition, we will develop a logic framework that not only captures the
properties of belief revision but also reflect the natural features of probabilistic
causal reasoning.

The rest of the paper is organized as follows. Section 2 is a brief review of the
theories of belief and causality. In Section 3, we introduce the model for doxastic
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causal reasoning. In Section 4, we give the syntax and semantics of the language
of doxastic causal reasoning and define some interesting notions of causality. In
Section 5, we discuss the correspondence between quantitative and qualitative
approaches. In Section 6, we present the complete axiomatization and the result
of decidability of this logic. We conclude this paper in Section 7.

2 Formal representation of belief and causality

In order to account for the reasoning of belief based on causal information (as
in Example 1), we will build our work upon the latest research in both fields,
the theories of belief revision and causal reasoning. In this section, we present
the necessary building blocks.

In the literature of epistemic logic, the knowledge of an agent is represented
by the notion of “epistemic distinguishability”: for each possible world w, there
is a set s(w) which consists of all the worlds which the agent cannot distinguish
at w. An agent knows ϕ at w whenever ϕ holds at every world in s(w). Many
logicians define belief in terms of “epistemic distinguishability” together with the
notion of “plausibility”: an agent believes ϕ at w whenever ϕ holds at the most
plausible epistemic indistinguishable worlds. [7] and [4] proposed a plausibility
model which formalizes both “epistemic distinguishability” and “plausibility”.
The language of conditional doxastic logic expresses the epistemic state of an
agent by epistemic operators. Kϕ stands for “the agent knows that ϕ”, Bϕ
stands for “the agent believes that ϕ” and “Bψϕ” stands for “the agent believes
ϕ conditional on ψ”. Based on the plausibility model, the conditional doxastic
logic defines the truth condition of conditional belief Bψϕ as: ϕ holds at the
most plausible epistemic indistinguishable world where ψ holds. We embrace a
qualitative representation of belief within our framework, however belief can also
be defined through subjective probability. The connections between quantitative
and qualitative belief representations can be seen in [14, 15].

Next, to represent a causal structure, we will make use of the structural equa-
tion model developed in [17, 9]. Intuitively, a causal structure consists of two
parts: the causal variables and the causal influence among those variables. For-
mally, the causal variables can be described by a signature S=(U ,V,Σ) where U
is a finite set4 of exogenous variables, V is a finite set of endogenous variables, Σ
is the range of the variables. In a structural equation model, the causal influence
among causal variables is usually represented by a set of structural functions F :
for each endogenous variable X, F contains a function fX which tells the value
of X given all of the other variables. Formally, a causal model is defined as a
tuple ⟨S,F⟩ where S = (U ,V,Σ) is the signature, F is a collection of functions{fX}X∈V with fX ∶ ((U ∪ V)/{X} → Σ) → Σ. fX is called a structural equation
function of X. In many studies of structural equation models, a causal model is

4 The investigation into causal models with infinite variables is presented within [11].
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usually assumed to be acyclic or recursive, which intuitively means the causal
influence represented by F is acyclic5.

The structural equation model can be used to define the notion of inter-
vention. Intervention is a hypothetical change of the actual state (as well as
the causal rules) which forces the value of some (endogenous) variables to be
changed. Let ⟨S,F⟩ be a causal model and let A be an assignment to variables
representing the actual state. The result of an intervention is defined as below.

Definition 1 The causal model results from an intervention forcing the value
of X⃗ to be x⃗ is defined as ⟨S,FX⃗=x⃗⟩ and the actual value after the intervention
is defined as AF⃗

X=x⃗ where:

– the functions in FX⃗=x⃗ = {f ′V ∣ V ∈ V} are such that: (i) for each V not in X⃗,

the function f ′V is exactly as fV , and (ii) for each V =Xi ∈ X⃗, the function
f ′Xi is a constant function returning the value xi ∈ x⃗ regardless of the values
of all other variables.

– AF⃗
X=x⃗ is the unique6 assignment to FX⃗=x⃗ whose assignment to exogenous

variables is identical with A. Formally, AF⃗
X=x⃗(Y ) is the unique assignment

that satisfies the following equations:

AF⃗
X=x⃗(Y ) = {A(Y ) if Y ∈ U

f ′Y ((AF⃗X=x⃗)−Y ) if Y ∈ V.
Note that (A)−X denotes the sub-assignment of A to (U ∪ V)/{X}.
Although the structural equation functions are deterministic (as the value of

a variable is determined when given the value of all other variables), they are
also able to represent non-deterministic causal influence. The causal modelling
approach interprets non-deterministic causal influence in a “Laplacian way”. Ac-
cording to the Laplacian interpretation of causal influence, the non-deterministic
causal relation between John’s talent and his ability in chemistry in Example 1
can be explained as follows: there is some variable UC which represents all the
unknown possible factors that influence the realization of John’s talent (for ex-
ample, John is more interested in playing video games than attending classes.).
For instance, the structural function for C can be defined as: FC(A−) = 1 when-
ever T=1 and UC = 1, where A− is a partial assignment to all variables other than
C. Thus the randomness of the value of C given T is reduced to the ignorance
of the value of UC .

Following the Laplacian interpretation of randomness, the causal structure
in Example 1 can be represented by a structural equation model ⟨S,F⟩, which
can be graphically represented as Figure 1.

5 Namely there is no sequence X1, ...,Xn such that for each 0 < k < n the value of
Xk+1 is dependent on Xk according to F , and the value of X1 is also dependent on
Xn.

6 Since F is acyclic, FX⃗=x⃗ is also acyclic. Thus FX⃗=x⃗ has a unique solution with respect
to each setting of exogenous variables.
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Fig. 1. The graphical representation of the “Laplacian causal model” for Example 1

The variables in S are nodes of the graph. The structural function in F are
defined in a way that for each variable V , only those variables that are V ’s
parents in Figure 1 matter in FV . Thus, we have an intuitive way to represent
the causal structure of Example 1. We will come back to the example later.

3 Combining belief and causality

In this section, we will combine the two approaches above and propose a causal
plausibility model which formalizes the reasoning of belief based on causal knowl-
edge. Our work is partially inspired by the very recent proposals made in [13, 5].
Specifically, the key idea of these proposals is that we can think of each possible
assignment to all causal variables as a state/world in the plausibility model. The
causal knowledge of an agent is represented by those possible worlds that comply
with the causal rules. Formally, according [5], let the causal rules be represented
by the set of structural equations F , the set of possible worlds that complies
with the causal rules can be represented by the set of assignments WF , where
WF={A ∈ ΣU∪V ∣ ∀X ∈ V,A(X) = fX((A)−X)}.

Based on the formal representation of knowledge and belief introduced in
Section 2, we will generalize this approach from causal knowledge to causal belief.
The causal plausibility model proposed here is a plausibility model extended
with a causal structure ⟨S,F⟩, whose plausibility relation is a binary relation
over WF . Let us first define the basic causal plausibility model as follows:

Definition 2 (Basic Causal Plausibility Model) A basic causal plausi-
bility model M is a tuple M = ⟨S,F ,≤,A⟩ where:
– S = (U ,V,Σ) is the signature (as in a structural equation model).
– F is a set of structural functions {fX}X∈V with fX ∶ ((U∪V)/{X}→ Σ)→ Σ.F is assumed to be acyclic.
– ≤ is a total order over WF .
– A is an assignment in WF .

In this model S,F represents the causal structure; ≤ represents the plausibil-
ity ordering of the agent to the value of causal variables; A represents the actual
value of the causal variables.
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We call the model defined in Definition 2 “basic” because we do not impose
any further restriction on the plausibility ordering, as long as the ordering is
over WF . However, this may be too arbitrary: let U1 and U2 be two exogenous
variables, it could be the case that all of the most plausible worlds in WF
assign U1 with value 1 but all of the most plausible worlds in which U2 = 1
assign U1 with value 0. By the classical interpretation of conditional belief, this
intuitively means that the agent changes the belief about U2 conditional on the
information about U1. However, this is irrational because exogenous variables are
assumed to be causally independent and the agent is assumed to have this causal
knowledge. Therefore, a rational agent’s belief about exogenous variables should
be independent according to our model (if there is no additional information),
and the plausibility ordering should reflect this feature as well.

Based on this consideration, we propose the following restriction on the plau-
sibility ordering in a causal plausibility model:

Definition 3 The plausibility ordering in ⟨S,F ,≤,A⟩ is uniform when the fol-
lowing property holds:

For any A1,A2 ∈WF and U⃗ ∈ U , {U⃗−} = U/{U⃗}, if A1 ≤ A2 A1(U⃗−) =A2(U⃗−), then for any A′1 and A′2, A′1(U⃗) = A1(U⃗), A′2(U⃗) = A2(U⃗) andA′1(U⃗−) = A′2(U⃗−) implies A′1 ≤ A′2.
This restriction means that the plausibility ordering between two settings

of exogenous variables is invariant under uniformly changing the value of any
exogenous variables. The condition of uniformity intuitively expresses the inde-
pendence among exogenous variables in belief.

A uniform causal plausibility model is a basic causal plausibility model whose
plausibility ordering is uniform. For simplicity, in the rest of the paper when we
say causal plausibility model, we mean it is a uniform causal plausibility model.

4 The logic of doxastic causal reasoning

4.1 Syntax and semantics

Since the model we proposed in Section 3 integrates both the causal and plau-
sibility models, in this section, we introduce a formal language to talk about
knowledge, belief, and causation. The formal language combines the language of
conditional doxastic logic and the logic for causal reasoning.

Definition 4 (Language for doxastic causal reasoning) Let S = (U ,V,Σ),
formulas φ of the language L(S) are given by7

φ ∶∶=X=x ∣ ¬φ ∣ φ ∧ φ ∣ Bψφ ∣Kψφ ∣ [V⃗ = v⃗]φ
where X ∈ U ∪ V, x ∈ Σ and V⃗ = v⃗ is a sequence of the form V1 = v1, ..., Vn = vn
where V⃗ ∈ V.8
7 Bϕ is seen as the abbreviation of B⊺ϕ.
8 For convenience, we will write both V1 = v1, ..., Vn = vn and V1 = v1 ∧ ... ∧ Vn = vn as
V⃗ = v⃗.
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L(S) not only contains the doxastic operator B (for belief) and K (for knowl-
edge) but also has the intervention operators of the form [X⃗ = x⃗] which expresses
antecedents of counterfactuals. Therefore this language is able to express belief
about counterfactuals and counterfactual beliefs B[X⃗ = x⃗]ϕ and [X⃗ = x⃗]Bϕ.

For the semantics of L(S), we define the truth condition of counterfactual
based on the causal epistemic model under the classical interventionist interpre-
tation: a counterfactual [X⃗ = x⃗]ϕ holds on a model M whenever ϕ holds on the
model MX⃗=x⃗ which results from setting the value of X⃗ to x⃗. Therefore, we define
the semantics of L(S) is given as below:

Definition 5 (Semantics of the language L(S))
Let M = ⟨S,F ,≤,A⟩ be a causal plausibility model.

– ⟨S,F ,≤,A⟩ ⊧X = x iff A(X) = x.
– ⟨S,F ,≤,A⟩ ⊧ Bψϕ iff Min≤∣∣ψ∣∣ ⊆ ∣∣ϕ∣∣, where ∣∣ϕ∣∣ ∶= {A′ ∈ WF ∣ ⟨S,F ,≤
,A′⟩ ⊧ ϕ}.9

– ⟨S,F ,≤,A⟩ ⊧Kψϕ iff ⟨S,F ,≤,A′⟩ ⊧ ϕ for all A′ ∈ ∣∣ψ∣∣.
– ⟨S,F ,≤,A⟩ ⊧ [X⃗ = x⃗]ϕ iff ⟨S,FX⃗=x⃗,≤X⃗=x⃗ AF⃗X=x⃗⟩ ⊧ ϕ, where ≤X⃗=x⃗ is a total

order over WFX⃗=x⃗ , defined as: AF⃗
X=x⃗ ≤X⃗=x⃗ A′F⃗X=x⃗ whenever AF ≤ A′F . 10

– the Boolean connectives are defined in the usual way.

It is clear that the semantics is a combination of causal model and plausibility
model. In particular, the intervention operator is treated as a typical dynamic
operator in the style of dynamic epistemic logic developed extensively in the
literature (see, e.g. [19, 6, 2]).

4.2 Important notions that are expressible by L(S)
In this section, we will introduce several important notions in the causality lit-
erature and show how to express them in our new language.

First, let us consider the concept of causal dependence. According to the
classical definition of causal influence developed in [9], given a set of structural
functions F , an endogenous variable Y causally affects Z means there exist an
assignment of some variables in (U ∪V)/{Y,Z}, such that changing the value of
Y will force the value of Z to be different11. The following proposition shows
that the notion of causal influence is definable by L(S) as follows:

Proposition 1. Y causally affects Z in M iff
M ⊧ ¬K¬⋁X⃗⊆V/{Y,Z},x⃗,y,z,z′∈Σ,z≠z′,Y ≠Z([X⃗ = x⃗, Y = y]Z = z′ ∧ [X⃗ = x⃗]Z = z).
9 Min≤S is defined as {w ∈ S ∣ ∀t ∈ S,w ≤ t}.

10 ≤X⃗=x⃗ is well-defined because WF
X⃗=x⃗ is identical to {AF⃗

X=x⃗ ∣ A ∈WF}.
11 Formally, Y causally affects Z in M means there is an assignment A that complies

with F , a value y ∈ Σ, and a (partial) assignment to V/{Y,Z} (X⃗ = x⃗) such thatAF⃗
X=x⃗,Y =y(Y ) ≠ A′F⃗X=x⃗(Y ).
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Proof. M ⊧ ¬K¬⋁X⃗⊆V−{Y,Z},x⃗,y,z,z′∈Σ,z≠z′,Y ≠Z([X⃗=x⃗, Y =y]Z=z′∧[X⃗=x⃗]Z=z) iff

there is some A′ ∈WF such that ⟨S,F ,≤,A′⟩ ⊧ ⋁X⃗⊆V−{Y,Z},x⃗,y,z,z′∈Σ,z≠z′,Y ≠Z([X⃗=x⃗, Y =y]Z=z′ ∧ [X⃗=x⃗]Z=z) iff there are some distinct variables Y and Z,

some X⃗ ⊆ V − {Y,Z}, such that A′F⃗
X=x⃗,Y =y(Z) ≠ A′F⃗X=x⃗(Z). That is, at some

possible state, forcing the value of some variable Y to be y changes the value of
another variable Z, i.e., Y causally affects Z. ◻

Therefore we define the following abbreviation for causal influence, Y ↝ Z
:= ¬K¬⋁X⃗⊆V/{Y,Z},x⃗,y,z,z′∈Σ,z≠z′,Y ≠Z([X⃗ = x⃗, Y = y]Z = z′ ∧ [X⃗ = x⃗]Z = z)

Next, the notion of direct causal influence can also be defined by our language.
Y has direct causal influence on Z, write Y ↝d Z, is a special case of causal
influence such that by fixing the value of all other variables, flip the value of
Y , will change the value of Z. So we define the following abbreviation for direct
causal influence:

Y ↝d Z := ¬K¬⋁X⃗=V/{Y,Z},x⃗,y,z,z′∈Σ,z≠z′([X⃗=x⃗, Y =y]Z=z′ ∧ [X⃗ = x⃗]Z = z)
5 Doxastic independence and probabilistic independence

5.1 Doxastic independence

As we have seen, dependence and independence of belief play an important role
in Example 1. Intuitively, the independence of belief between X⃗ and Y⃗ can be
interpreted as the belief about X⃗ is invariant conditional on any (consistent)
setting of Y⃗ and vice versa”. With the language of doxastic causal reasoning, it
can be formally expressed by:

Ind(X⃗, Y⃗ ) ∶= ⋀x⃗,y⃗∈Σ(¬BY⃗ =y⃗�→ (BY⃗ =y⃗X⃗=x⃗←→ BX⃗=x⃗))
X⃗ áB Y⃗ ∶= Ind(X⃗, Y⃗ ) ∧ Ind(Y⃗ , X⃗)

X⃗ áB Y⃗ is the formal expression of doxastic independence between X⃗ and Y⃗
in our account. Similarly, we can define the conditional doxastic independence
between X⃗ and Y⃗ given Z⃗ can be defined as:

Ind(X⃗, Y⃗ ∣ Z⃗) ∶= ⋀x⃗,y⃗,z⃗∈Σ(¬BY⃗ =y⃗,Z⃗=z⃗�→ (BY⃗ =y⃗,Z⃗=z⃗X⃗ = x⃗←→ BZ⃗=z⃗X⃗=x⃗))
X⃗ áB Y⃗ ∣ Z⃗ ∶= Ind(X⃗, Y⃗ ∣ Z⃗) ∧ Ind(Y⃗ , X⃗ ∣ Z⃗)

With these notions, we will show that our framework can explain very well
the dependence and independence of belief in Example 1.

Proposition 2. Let ⟨S,F⟩ be a causal model as shown in Figure 1. Then:

(a) There is a uniform plausibility model M of the form ⟨S,F ,≤,A⟩ such that
M /⊧ C áB P

(b) for any ≤ and A such that M = ⟨S,F ,≤,A⟩ is a uniform plausibility model,
we have M ⊧ C áB P ∣ T
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(c) There is a uniform plausibility model M of the form ⟨S,F ,≤,A⟩ such that
M /⊧ C áB P ∣ T,A

Proof. See appendix.

This result explains our intuition of dependence and independence in Exam-
ple 1 in a precise manner. In addition, these results also fit the prediction made
by the causal Bayesian network approach in a qualitative sense. 12

5.2 Comparison to probabilistic independence

The correspondence between belief and probability has been studied in [3] in
which the Boolean value of B(X⃗ = x⃗) (believing X⃗ = x⃗) is seen as a qualitative
representation of the probability of X⃗ = x⃗ in a conditional probabilistic space.
In probability theory, the probabilistic independence between X⃗ and Y⃗ (write
X⃗ á Y⃗ ) with respect to a probabilistic distribution P can be expressed as: for
any value x⃗ of X⃗ and any value y⃗ of Y⃗ , the conditional probability P (X⃗=x⃗ ∣ Y⃗ =y⃗)
is equal to the probability P (X⃗=x⃗). Following the correspondence between belief

and probability argued in [3], we can interpret BY⃗ =y⃗X⃗=x⃗↔ BX⃗=x⃗ in the defi-
nition of áB as a qualitative counterpart of P (X⃗=x⃗ ∣ Y⃗ =y⃗) = P (X⃗=x⃗). Actually,
our definition of doxastic independence preserves many important properties of
probabilistic independence:

Proposition 3. The following L(S)-formulas are valid with respect to the class
of causal plausibility models:

a. (X⃗ áB Y⃗ ∣ Z⃗)→ (Y⃗ áB X⃗ ∣ Z⃗) (symmetry)
b. (X⃗ áB Y⃗ W⃗ ∣ Z⃗)→ (X⃗ áB Y⃗ ∣ Z⃗) (decomposition)
c. (X⃗ áB Y⃗ W⃗ ∣ Z⃗)→ (X⃗ áB Y⃗ ∣ Z⃗W⃗ ) (weak union)
d. ((X⃗ áB Y⃗ ∣ Z⃗) ∧ (X⃗ áB W⃗ ∣ Z⃗Y⃗ ))→ (X⃗ áB Y⃗ W⃗ ∣ Z⃗) (contraction)
e. ((X⃗ áB W⃗ ∣ Z⃗Y⃗ ) ∧ (X⃗ áB Y⃗ ∣ Z⃗W⃗ ))→ (X⃗ áB Y⃗ W⃗ ∣ Z⃗)(intersection)
Proof. See appendix.

5.3 Relation with causal Bayesian network

It is well-known that some quantitative modelling approaches (such as causal
Bayesian networks) are very successful in characterizing dependence and inde-
pendence in a causal structure. For instance, from the perspective of a causal
Bayesian network, Example 1 can be formalized as the directed acyclic graph

12 According to the causal Bayesian network approach, Example 1 can be formalized
as the directed acyclic graph in Figure 1. Thus, the dependence and independence in
the example can be explained by the “d-separation” criteria in [20]: the independence
between C and P is not guaranteed as they are not d-separated by ∅; CP ∣ T because
C and P are d-separated by {T}; the independence between C and P conditional
on A,T is not guaranteed as they are not d-separated by {A,T}.
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in Figure 1. Based on this graph, (i) and (ii) can be justified by the notion of
“d-separation”.13

According to [20], X⃗ and Y⃗ are independent conditional on Z⃗ for any proba-
bilistic distribution (which is Markovian relative to the causal graph) whenever
X⃗ and Y⃗ are d-separated by Z⃗. Thus:

(a’) The independence between C and D is not guaranteed as they are not d-
separated by ∅

(b’) C and D are independent conditional on B as they are d-separated by {B}.
(c’) The independence between C and D conditional on A,B is not guaranteed

as they are not d-separated by {A,B}
We can find that (a),(b),(c) corresponds to (a’),(b’),(c’) in Proposition 2.

Though they are derived from two different characterizations of the causal struc-
ture, there is a clear correspondence between the quantitative approach and the
qualitative approach.

6 Axiomatization

The logic of doxastic causal reasoning can be axiomatized by the Hilbert style
system LBCU , whose axioms and rules are given in Table 1. Since the axioms of
LBCU depend on the signature of the language, we will write the axiom system
for the language L(S) as LBCU(S).

Our axiomatization is both based on the axiom system of counterfactuals
developed in [9] and the axiom system of conditional doxastic logic developed
in [7, 4, 1]. However, we are not just simply merging the axioms from the two
logic systems. There are interesting new axioms in LBCU which characterize the
interaction between knowledge, belief, and causality. Those axioms reflect the
typical features of doxastic causal reasoning, and they can not be derived from
the logic of counterfactuals and logic of conditional belief.

The axioms of the system LBCU can be sorted into three kinds.
The first kind of the axioms, which includes A1 to A5, A¬, A∧ and A[][], is

directly from the system AXrec in [9] or developed in [10]. They describe how
the intervention operator works in the causal structure. A1 to A4 express the
functionality of intervention. A5 guarantees the causal influence is acyclic. A¬,
A∧ and A[][] are reduction axioms for Boolean operators.

The second kind of axioms includes B1 to B6. Those axioms are from the
axiom system developed in [7, 4, 1] and they characterize the properties of con-
ditional belief and knowledge.

13 Path is a notion of directed acyclic graph which means a sequence of arrows in the
graph. We use “↣ ” and “ ↢ ” to denote arrows in the graph. A path p is d-separated
by a set of variables Z iff (i) p contains i↣m↣ j or i↢m↣ j such that m ∈ Z, or
(ii) p contains i↣m↢ j such that m ∉ Z and no descendant of m is in Z. Given two
sets of variables X⃗ and Y⃗ , X⃗ and Y⃗ are d-separated by Z⃗ if and only if Z⃗ d-separate
every path from X⃗ to Y⃗ .
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P ϕ for ϕ an instance of a propositional tautology MP From φ1 and φ1 → φ2 infer φ2

Nec From φ infer [X⃗ = x⃗]φ and Bψφ LE From φ↔ ψ infer Bϕχ↔ Bψχ

A1 [X⃗=x⃗]Y =y → ¬[X⃗=x⃗]Y =y′ for y, y′ ∈ {0,1} with y ≠ y′ A2 ⋁y∈Σ[X⃗=x⃗]Y =y
A3 ([X⃗=x⃗]Y =y ∧ [X⃗=x⃗]Z=z)→ [X⃗=x⃗, Y⃗ = y⃗]Z=z A4 [X⃗=x⃗, Y =y]Y =y
A5 (X0 ↝X1 ∧⋯ ∧Xk−1 ↝Xk)→ ¬(Xk ↝X0)

X0, ...,Xk are distinct variables in V
A¬ [X⃗=x⃗]¬φ↔ ¬[X⃗=x⃗]φ A∧ [X⃗ = x⃗]φ1 ∧φ2 ↔ [X⃗ = x⃗]φ1 ∧ [X⃗ = x⃗]φ2)

A[][] [X⃗ = x⃗][Y⃗ = y⃗]φ↔ [X⃗ = x⃗′, Y⃗ = y⃗]ϕ
KB Kψϕ↔ Bψ∧¬ϕϕ CM [X⃗ = x⃗]Bψϕ↔ Bψ[X⃗ = x⃗]ϕ
SD ¬K¬(U⃗ = u⃗ ∧ ϕ)→KU⃗=u⃗ϕ if {U⃗} = U IGN ¬K¬(U⃗ = u⃗) if U⃗ ∈ U

UNI U⃗ áB U⃗ ′ ∣ U⃗ ′′ for disjoint U⃗ , U⃗ ′ and U⃗ ′′ in U
B1 Bχ(ϕ→ ψ)→ (Bχϕ→ Bχψ) B2 Kϕ→ ϕ

B3 Kϕ→ Bψϕ B4 Bχϕ→KBχϕ ¬Bχϕ→K¬Bχϕ
B5 Bϕϕ B6 ¬Bϕ¬ψ → (Bϕ∧ψχ↔ Bϕ(ψ → χ))

Table 1. Axiom System LBCU

The third kind of axioms includes KB, CM , SD, IGN and UNI. Those
axioms characterize the entanglement between the causal structure and epis-
temic operators. Axiom KB is a reduction axiom for knowledge. Axiom CM
expresses that intervention does not add or reduce the information of an agent
(an agent believes ϕ after an intervention whenever the agent believes ϕ holds
after the intervention). Axiom SD expresses that the agent has full knowledge of
causality and the world is semi-deterministic: if ϕ is possible, then had the agent
hypothetically got all of the information about the exogenous variables, ϕ would
be certain to the agent. Axiom IGN expresses that the agent is ignorant about
the real value of exogenous variables. Axiom UNI expresses that all exogenous
variables are independent of each other.

The deduction rule of LBCU includes the MP rule, Necessitation rule, and
LE rule as conditional doxastic logic.

Actually the Axiom UNI defines the property of being uniform:

Proposition 4. A basic causal plausibility model ⟨S,F ,≤,A⟩ is uniform iff for
any disjoint sequences of exogenous variable U⃗ , U⃗ ′ and U⃗ ′′, ⟨S,F ,≤,A⟩ ⊧ U⃗ áB
U⃗ ′ ∣ U⃗ ′′.
Proof. See appendix.

Let LBC be the fragment of LBCU which excludes the axiom IGN from LBCU .
We can prove the following completeness theorem for the logic of doxastic causal
reasoning:

Theorem 1 (Completeness theorem for LBC and LBCU )

(a) LBC(S) is sound and strongly complete for L(S) with respect to the class of
all basic causal plausibility models.
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(b) LBCU(S) is sound and strongly complete for L(S) with respect to the class
of all uniform causal plausibility models.

Proof. (a): The proof of soundness can be seen in appendix. For the complete-
ness of LBC , it is sufficient to show that for any maximal consistent set of L(S)-
formulas of LBC , there is a causal plausibility model.

Before proceeding, let us define some fragments of L(S). Let L−(S) be the
fragment of L(S) in which there is not epistemic operator nested in intervention
operators and L0(S) be the fragment of L−(S) which excludes epistemic opera-
tors. By the axiom KB, CM , A∧, A¬, every formula ϕ of L(S) can be reduced
to a formula tr(ϕ) ∈ L−(S) such that ⊢BC ϕ↔ tr(ϕ). Therefore, it is sufficient
to show that for any maximal consistent set of L−(S)-formulas Γ of LBC , there
is a basic causal plausibility model ⟨S,FΓ ,≤Γ ,AΓ ⟩ ⊧ ΓAΓ is defined in the obvious way, that is AΓ (X)=x whenever X=x ∈ Γ . A1

and A2 guarantee that it is well defined. FΓ={fV ∣ V ∈ V} is defined as follows: for

each V ∈ V, fΓV is a function such that fΓV (U⃗=u⃗, X⃗=x⃗)=v iff KU⃗=u⃗[X⃗=x⃗]V =v ∈ Γ
where U⃗ are all the exogenous variables and X⃗ are all the endogenous variables
in V/{V }. A1, A2 and SD guarantees that there is a unique σ ∈ Σ such that

KU⃗=u⃗[X⃗=x⃗]V =σ ∈ Γ . Therefore fV is well defined. In particular, we have:

Lemma 1 If U⃗=u⃗ ∈ Γ , then fΓV (U⃗=u⃗, X⃗=x⃗)=v iff [X⃗=x⃗]V =v ∈ Γ . (The proof of
Lemma 1 can be seen in appendix.)

By the same argument as [9], we can conclude that:

If χ ∈ L0(S), then for any ≤, ⟨S,FΓ ,≤,AΓ ⟩ ⊧ χ iff χ ∈ Γ . (*)

Then we will construct the plausibility ordering ≤Γ . We can think of the
formulas in L0(S) as atomic propositional symbols, and follow the construction
of canonical models for the BRSI system in [7]. We first define a series of
orderings ≼w on LBC-consistent sets of L−(S) formulas (where w is a LBC-
consistent set). For maximal consistent sets of L−(S)-formulas w, t, u: we define
t ≼w u whenever there is some ϕ ∈ t ∩ u such that {ψ ∣ Bϕψ ∈ w} ⊆ T . Let
Ww={x ∣ x ≼w y for some y}. Following exactly the same steps as in [7], it can
be shown that:

Lemma 2 Bϕψ ∈ w iff Min≼Γ ∣ϕ∣w ⊆ ∣ψ∣w where ∣ϕ∣w refers to {s ∈Ww ∣ ϕ ∈ s}.
In addition, [7] shows that by Axiom B4, for any s ∈ Ww, ≼s and ≼w are

identical.

Lemma 3 for each assignment to all exogenous variables U⃗=u⃗, there is exactly
one Θ ∈WΓ such that U⃗=u⃗ ∈ Θ. (The proof of Lemma 3 can be seen in appendix.)

By definition, for each full assignment to exogenous variables U⃗=u⃗, there is
exactly one assignment A ∈ WΓ with A(U⃗)=u⃗. So there is one-to-one corre-
spondence between the members of WΓ and the assignments in WF (the set of
all assignments that complies with FΓ ). By this bijection, we can define ≤Γ as
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follows: For any assignments A1,A2 ∈ WF , A1 ≤Γ A2 iff w1 ≼Γ w2 where wn
refers to the unique assignment in WΓ with An=Awn . Therefore (WF ,≤Γ ) is
isomorphic to (WΓ ,≼Γ ).

Then we are ready to show that for any maximal consistent set of L−(S)-
formulas Γ of LBC , ϕ ∈ Γ ⟨S,FΓ ,≤Γ ,AΓ ⟩ ⊧ ϕ. By induction on the complexity
of ϕ, we have:

– If χ ∈ L0(S), then by (*), ϕ ∈ Γ ⟨S,FΓ ,≤Γ ,AΓ ⟩ ⊧ χ. The Boolean cases are
trivial.

– If χ is of the form Bϕψ B
ϕψ ∈ Γ iff Bϕψ ∈ Γ iff Min≼Γ ∣ϕ∣Γ ⊆ ∣ψ∣Γ (by Lemma

2) iff Min≤∣∣ϕ∣∣ ⊆ ∣∣ψ∣∣ where ∣∣ϕ∣∣ ∶ ={A′ ∈ WF ∣ ⟨S,FΓ ,≤Γ ,A′⟩ ⊧ ϕ} (by the
inductive hypothesis and the isomorphism between ⟨WF ,≤Γ ⟩ and ⟨WΓ ,≼Γ ⟩)
iff Bϕψ ∈ Γ .

In addition, based on this result, A5 guarantees that (by Proposition 1) FΓ is
acyclic. So ⟨S,FΓ ,≤Γ ,AΓ ⟩ fulfills all the requirement of basic causal plausibility
models.
(b): By the completeness result of Theorem 1(a), for any maximal LBC-consistent
set Γ , there is ⟨S,FΓ ,≤Γ ,AΓ ⟩ ⊧ Γ . If Γ is LBCU consistent, then for any disjoint
sequences of exogenous variable U⃗ , U⃗ ′ and U⃗ ′′, U⃗ áB U⃗ ′ ∣ U⃗ ′′ ∈ Γ . By Proposi-
tion 4, ⟨S,FΓ ,≤Γ ,AΓ ⟩ must be uniform. So every LBCU -consistent set Γ has a
uniform causal plausibility model.By Proposition 4, Axiom UNI is sound with
respect to the class of uniform causal plausibility models. ◻

To define the notion of causal dependence, we assume that the signature S is
finite. The assumption makes the decidability problem trivial: if S is finite, there
are only finitely many causal models based on S. However, we can show that the
problem of satisfiability is still decidable even with an infinite signature.

Proposition 5. A L(S) formula ϕ is satisfiable in a model based on a signatureS iff it is satisfiable in a model based on a finite signature.

Proof. See appendix.

7 Conclusion and future work

In this paper, we have proposed an account of doxastic causal reasoning based
on integrating the existing causal and plausibility models. Our formal frame-
work includes both the traditional interventionist causal language and epistemic
operators for belief revision so that it is able to express important concepts
and characterize the reasoning of causality and dynamic change of beliefs. Tech-
nically, we developed a complete deductive system for doxastic causal reason-
ing, and its satisfiability problem is decidable. In addition, we illustrated with
examples that our qualitative approach makes the same prediction of depen-
dence/independence as the quantitative account in terms of the causal Bayesian
network. For future directions, we plan to investigate further issues concerning
the contrast between qualitative and quantitative approaches. Also, we want to
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extend the formal framework to a multi-agent setting so that our account can
be used to model how a group of agents does causal reasoning when each of the
agents gets different information.

A Appendix

Proof of Proposition 2
Let assignments as shown in the following table. Let the ordering ≤ be: A1 ≤A2 ≤ ⋯ ≤ A16. It is easy to see that the ordering is uniform. And we can see that⟨S,F ,≤,A⟩ ⊧ ¬BP=1� but ⟨S,F ,≤,A⟩ /⊧ BC=1P=1↔ BP=1.

UC UP T UA C P A UC UP T UA C P A UC UP T UA C P A UC UP T UA C P A

A1 1 1 0 1 0 0 0 A5 1 1 1 1 1 1 1 A9 1 1 0 0 0 0 0 A13 1 1 1 0 1 1 0A2 0 1 0 1 0 0 0 A6 0 1 1 1 0 1 1 A10 0 1 0 0 0 0 0 A14 0 1 1 0 0 1 0A3 1 0 0 1 0 0 0 A7 1 0 1 1 1 0 1 A11 1 0 0 0 0 0 0 A15 1 0 1 0 1 0 0A4 0 0 0 1 0 0 0 A8 0 0 1 1 0 0 0 A12 0 0 0 0 0 0 0 A16 0 0 1 0 0 0 0

(b) is easy to check by the semantics.
(c): By the table in (a), we can see that ⟨S,F ,≤,A⟩ ⊧ ¬BT=1,A=0� but⟨S,F ,≤,A⟩ /⊧ BT=1,A=0,C=1P=1↔ BT=1,A=0P=1. ◻

Proof of Proposition 3 (a) is obtained by the definition of conditional indepen-
dence directly. For the convenience of the following proof, let M be any uniform
causal plausibility model, we show that M ⊧ Ind(X⃗, Y⃗ ∣ Z⃗) → Ind(Y⃗ , X⃗ ∣ Z⃗).
Suppose that M ⊧ Ind(X⃗, Y⃗ ∣ Z⃗). If there exist z⃗, x⃗, y⃗ ∈ Σ such that Min≤∣∣Z⃗=z⃗∧
X⃗=x⃗∣∣ ⊆ ∣∣Y⃗ =y⃗∣∣ and Min≤∣∣Z⃗=z⃗∣∣ /⊆ ∣∣Y⃗ =y⃗∣∣, then there exist A1 ∈Min≤∣∣Z⃗=z⃗∣∣ withA1(X⃗)=x⃗1 ≠ y⃗ and A1(Y⃗ )=y⃗1 ≠ y⃗, A2 ∈Min≤∣∣X⃗=x⃗∧ Z⃗=z⃗∣∣ with A2(Y⃗ )=y⃗. Since
causal models are acyclic, there are two cases: (1) the values of Y⃗ are determined
by the values of Z⃗. Then A1(Y⃗ ) = A2(Y⃗ ) since A1(Z⃗) = A2(Z⃗), a contradiction.
(2): there are disjoint sequences of exogenous variables U⃗ and U⃗ ′ such that U⃗ de-
termines the values of X⃗Z⃗. and U⃗ ′ determines the values of Y⃗ . Hence, there exist
u⃗1, u⃗2,u⃗′1,u⃗′2 ∈ Σ such that A1(U⃗)=u⃗1, A1(U⃗ ′)=u⃗′1 and A2(U⃗)=u⃗2, A2(U⃗ ′)=u⃗′2.

Then there existA3 and A4 where A3(U⃗)=u⃗1, A3(U⃗ ′)=u⃗′2, A3(X⃗)=x⃗1, A3(Y⃗ )=y⃗
and A4(U⃗)=u⃗2, A4(U⃗ ′)=u⃗′1, A4(X⃗)=x⃗, A3(Y⃗ )=y⃗1, A3(Z⃗)=z⃗=A4(Z⃗). Since M is

uniform, A1 ≤ A3 implies A4 ≤ A2. Since A1 ∈Min≤∣∣Z⃗=z⃗∣∣ and A2 ∈Min≤∣∣Z⃗=z⃗∧
X⃗=x⃗∣∣ , we have A1 ≤ A3 and A2 ≤ A4, a contradiction. The other direction is
similar. Hence, we have M ⊧ Ind(Y⃗ , X⃗ ∣ Z⃗).

The proofs of (b)(c)(d)(e) are similar. We show the proof of (b) as an ex-
ample: Suppose that M ⊧ (X⃗ áB Y⃗ W⃗ ∣ Z⃗). For any z⃗, y⃗, x⃗ ∈ Σ: Assume that
Min≤∣∣Z⃗=z⃗ ∧ X⃗=x⃗∣∣ ⊆ ∣∣Y⃗ =y⃗∣∣. Since ≤ is a total order, there exists w⃗′ ∈ Σ such
that Min≤∣∣Z⃗=z⃗ ∧ X⃗=x⃗∣∣=Min≤∣∣Z⃗=z⃗ ∧ X⃗=x⃗∧ W⃗=w⃗′∣∣. Then Min≤∣∣Z⃗=z⃗ ∧ X⃗=x⃗∣∣ ⊆∣∣Y⃗ =y⃗ ∧ W⃗=w⃗′∣∣. It follows that Min≤∣∣Z⃗=z⃗∣∣ ⊆ ∣∣Y⃗ =y⃗ ∧ W⃗=w⃗′∣∣ ⊆ ∣∣Y⃗ =y⃗∣∣. Assume
that Min≤∣∣Z⃗=z⃗∣∣ ⊆ ∣∣Y⃗ =y⃗∣∣. Similarly, there exists w⃗′ ∈ Σ such that Min≤∣∣Z⃗=z⃗∣∣ ⊆∣∣Y⃗ =y⃗∧ W⃗=w⃗′∣∣. Hence, Min≤∣∣Z⃗=z⃗ ∧ X⃗=x⃗∣∣ ⊆ ∣∣Y⃗ =y⃗∧ W⃗=w⃗′∣∣ ⊆ ∣∣Y⃗ =y⃗∣∣. So we have
M ⊧ Ind(X⃗, Y⃗ ∣ Z⃗). ◻
Proof of Proposition 4 Let M=⟨S,F ,≤,A⟩ be any causal plausibility model.⇒: Suppose that there exist U⃗ ,U⃗ ′ and U⃗ ′′ such that M /⊧ U⃗ áB U⃗ ′ ∣ U⃗ ′′.
We consider the case that M ⊧ BU⃗=u⃗0,U⃗ ′′=u⃗′′U⃗ ′=u⃗′0 and M /⊧ BU⃗ ′′=u⃗′′U⃗ ′=u⃗′0. Then
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there exists A1 ∈ Min≤∣∣U⃗ ′′=u⃗′′∣∣, such that A1(U⃗ ′)=u⃗′1 ≠ u⃗′0 and A1(U⃗)=u⃗1 ≠
u⃗0. Let A2,A3,A4 be assignments such that A2(U⃗ ′)=u⃗′0, A3(U⃗)=u⃗0, A4(U⃗ ′)=u⃗′1
and A2,A3,A4 agree the values of the other exogenous variables with A1,A2,A3

respectively. Let U⃗−=U − {U⃗ ′}. Then A1(U⃗−)=A2(U⃗−) and A3(U⃗−)=A4(U⃗−),A1(U⃗ ′)=A4(U⃗ ′) and A2(U⃗ ′)=A3(U⃗ ′) but A4 /≤ A3. Hence, M is not uniform.⇐: For any assignments A1,A2 and U⃗ ∈ U , let U⃗−=U − {U⃗}. Suppose thatA1 ≤ A2 and A1(U⃗−)=A2(U⃗−)=u⃗−1 . Let A′1 and A′2 be assignments such thatA′1(U⃗)=A1(U⃗)=u⃗1,A′2(U⃗)=A2(U⃗)=u⃗2 and A′1(U⃗−)=A′2(U⃗−)=u⃗−2 . Since ≤ is a to-

tal order and A1 ≤ A2, there exists U⃗∗=u⃗∗ where U⃗∗ is a sequence of exogenous
variables and u⃗∗ ∈ Σ such that A1 ∈ Min≤∣∣U⃗∗=u⃗∗∣∣. If U⃗∗ ⊆ U⃗ or U⃗∗ ⊆ U⃗−,
then we have A′1 ≤ A′2 since U⃗ is independent from U⃗−. If U⃗∗ ⊆ U⃗ ∪ U⃗∗, then
there exists U⃗ ′ ⊆ U⃗ and U⃗ ′′ ⊆ U⃗− such that U⃗ ′ ∪ U⃗ ′′=U⃗∗. Let U⃗1=U⃗ − U⃗ ′ and
U⃗2=U⃗− − U⃗ ′′. Note that U⃗1, U⃗∗ and U⃗2 are disjoint, and U⃗ ′

1, U⃗
′
2, U⃗

∗ are indepen-

dent from each other. Let A1(U⃗ ′
1)=u⃗′1=A′1(U⃗ ′

1),A1(U⃗ ′
2)=u⃗′2=A2(U⃗ ′

2), A1(U⃗∗)=u⃗∗
and A′1(U⃗ ′

2)=u⃗′′2=A′2(U⃗ ′
2). Then M ⊧ BU⃗ ′

2=u⃗′2,U⃗∗=u⃗∗U⃗ ′
1=u⃗′1 and M ⊧ BU⃗ ′

2=u⃗′2U⃗ ′
1=u⃗′1.

We have A′1 ∈Min≤∣∣U⃗2=u⃗′′2 ∣∣ ⊆ ∣∣U⃗1=U⃗ ′
1∣∣. Since A′2 ∈ ∣∣U⃗2=u⃗′′2 ∣∣, we have A′1 ≤ A′2.

So M is uniform. ◻
Proof of Theorem 1(a)Soundness Let M=⟨S,F ,≤,A⟩ be a causal plausibility
model.

For Axiom KB, Min≤∣∣¬ϕ∣∣ ⊆ ∣∣ϕ∣∣ iff ∣∣¬ϕ∣∣=∅ iff Kϕ holds.

By Definition 4.1, A ≤ A′ ⇔ AF⃗
X=x⃗ ≤ A′F⃗X=x⃗. Therefore Min≤∣∣[X⃗=x⃗]ψ∣∣ ⊆∣∣[X⃗=x⃗]ϕ∣∣ iff Min≤X⃗=x⃗ ∣∣ψ∣∣ ⊆ ∣∣ϕ∣∣. So Axiom CM is sound.

IfM ⊧ ¬K¬(U⃗=u⃗∧ϕ), then there isA′ ∈WF such that ⟨S,F ,≤,A′⟩ ⊧ U⃗=u⃗∧ϕ.
Since F is acyclic, and U⃗ are all the exogenous variables, there is exactly oneA′ ∈ WF such that A′(U⃗)=u⃗. So ∣∣U⃗=u⃗∣∣={A′} and ⟨S,F ,≤,A′⟩ ⊧ ϕ. Therefore

M ⊧KU⃗=u⃗ϕ. So Axiom SD is sound.

As for each U⃗=u⃗, there is A ∈WF with A(U⃗)=u⃗, so Axiom IGN is sound.

The soundness of A1-A5 has been proven in [9]. The soundness of B1-B6 has
been proven in [7]. The soundness of A¬, A∧ and A[][] and the deduction rules is
obvious. Therefore LBC is sound with respect to basic causal plausibility models.◻
Proof of Lemma 1 Suppose [X⃗=x⃗]V =v ∈ Γ and U⃗=u⃗ ∈ Γ , then by Axiom B2,¬K¬(U⃗=u⃗ ∧ [X⃗=x⃗]V =v) ∈ Γ . Then by Axiom SD, KU⃗=u⃗[X⃗=x⃗]V =v ∈ Γ , thus
fΓV (U⃗=u⃗, X⃗=x⃗)=v. On the other hand, if [X⃗=x⃗]V =v /∈ Γ , then by A1 and A2,
there is v′ ∈ Σ with v ≠ v′ such that [X⃗=x⃗]V =v′ ∈ Γ . Then by the same steps

KU⃗=u⃗[X⃗=x⃗]V =v′ ∈ Γ , therefore fΓV (U⃗=u⃗, X⃗=x⃗) ≠ v. ◻
Proof of Lemma 3 By Axiom IGN , ¬K¬(U⃗=u⃗) ∈ Θ, so by Axiom KB,¬BU⃗=u⃗� ∈ Θ. By Lemma 2, Min≼Γ ∣U⃗=u⃗∣Γ ≠ ∅. Therefore there is at least
one assignment in WΓ with U⃗=u⃗ ∈ Θ. Let ϕ be any formula in Θ, by Axiom

B2, ¬K¬(U⃗=u⃗ ∧ ϕ) ∈ Θ. Then by Axiom SD, BU⃗=u⃗∧¬ϕ� ∈ Θ. By Lemma 2,
Min≼Γ ∣U⃗=u⃗∧¬ϕ∣Γ=∅. Therefore, for any Θ′ with U⃗=u⃗ ∈ Θ′, ¬ϕ /∈ Θ′. Since Θ′ is
maximal consistent, ϕ ∈ Θ′. Thus Θ=Θ′. ◻
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Proof of Proposition 5(Decidability) Given a signature S=(U ,V,Σ).
Let ⟨ϕ⟩={X ∈ U ∪ V ∣ X occurs in ϕ}. Let Sϕ=(Uϕ,Vϕ,Σϕ), where Vϕ=V ∩ ⟨ϕ⟩;Uϕ=U ∩ ⟨ϕ⟩∪U∗ where U∗ is a set of fresh variables with ∣U∗∣=∣⟨ϕ⟩∣; Σϕ is a finite
subset of Σ and contains all the values that appear in ϕ. Note that Sϕ is finite.

We construct a finite model M=⟨Sϕ,Fϕ,≤ϕ,A′⟩ based on Sϕ. First, we de-
fine Fϕ: since ϕ is satisfiable in M , there exists an ordering ≺ among the en-
dogenous variables in V such that if X ≺ Y , then the value of FX is indepen-
dent of the value of Y . Let Pre(X)={Y ∈ U ∣ Y ≺ X} and let D(X)={U ∈U ∣ U influences the value of X}. For convenience, we only allow fX to take the
values of variables in U∪Pre(X)∪D(X) as parameters. Then for any endogenous
variable X ∈ U , we define f ′X as follows: Induction on ≺. Let f ′X(u⃗, a⃗)=fX(u⃗, b⃗)
where a⃗ is the values of variables Vϕ/{X} and b⃗ is the values of variables in
Pre(X), u⃗ is the values of variables in U . IfX is ≺-minimal, then f ′X(u⃗, a⃗)=fX(u⃗).
Inductive: let f ′X(u⃗, a⃗)=fX(u⃗, b⃗) where a⃗ is the values of variables Vϕ/{X} and

b⃗ is the values of variables in Pre(X). For any Y ∈ Pre(X), if Y ∈ Pre(X)∩Vϕ,

then the value of Y in b⃗ is the value of Y in a⃗. If Y ∈ Pre(X)/Vϕ , then the value

of Y in b⃗ is f ′Y (u⃗, a⃗)(By I.H, f ′Y (u⃗, a⃗) has been defined).

For exogenous variables: There are two cases: (1) D(X) ⊆ ⟨ϕ⟩,fϕX(u⃗′)=f ′X(u⃗)
where u′ denotes the values of exogenous variables in Uϕ and u⃗ denotes the value
of variables in U , and u⃗′ agrees u⃗ on the values of variables in D(X); (2) there is
a non-empty exogenous variable set B⃗=D(X)/⟨ϕ⟩, then we pick a fresh variable

UX ∈ U∗ and a value ux, let fϕX(u⃗′, uX)=f ′X(u⃗). Then UX=uX iff B⃗=b⃗ where b⃗
component in u⃗.

Let Fϕ={fϕX ∣X ∈ ⟨ϕ⟩}, we define ≤ϕ as follow: for anyA′1,A′2 inMϕ,A′1 ≤ϕ A′2
iff for any A1,A2 in M , if A′1(X)=A1(X) and A′2(X)=A2(X) for all X appear in
ϕ, then A1 ≤ A2. Then we induction on ϕ. The cases without epistemic operators
are similar in [9]. We consider the case that ϕ=Bαψ. If M ⊧ ϕ, then Min≤∣∣α∣∣ ⊆∣∣ψ∣∣. Suppose that Mϕ /⊧ ϕ, then there exists an assignment A′n ∈Min≤ϕ ∣∣α∣∣ andA′n /⊧ ψ. Which means there is an assignment An in M such that An(X)=A′n(X)
for all X ∈ ∣ϕ∣ and An ∈ Min≤∣∣α∣∣. Since all variables in ψ occur in ϕ, we haveAn /⊧ ψ, and hence, M /⊧ Bαψ which is a contradiction.

The other direction: It is easy to extend a finite model to an infinite model by
adding infinitely many irrelevant fresh variables and extending the plausibility
ordering. ◻
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Abstract. Epistemic logic can be used to reason about statements such
as ‘I know that you know that I know that φ’. In this logic, and its ex-
tensions, it is commonly assumed that agents can reason about epistemic
statements of arbitrary nesting depth. In contrast, empirical findings on
Theory of Mind, the ability to (recursively) reason about mental states
of others, show that human recursive reasoning capability has an upper
bound.
In the present paper we work towards resolving this disparity by propos-
ing some elements of a logic of bounded Theory of Mind, built on Public
Announcement Logic. Using this logic, and a statistical method called
Random-Effects Bayesian Model Selection, we estimate the distribution
of Theory of Mind levels in the participant population of a previous be-
havioral experiment. Despite not modeling stochastic behavior, we find
that approximately three-quarters of participants’ decisions can be de-
scribed using Theory of Mind. In contrast to previous empirical research,
our models estimate the majority of participants to be second-order The-
ory of Mind users.

Keywords: Theory of Mind · Public Announcement Logic · Epistemic
Logic · Behavioral Modeling · Random-Effects Bayesian Model Selection
· Cognitive Science

1 Introduction

Theory of Mind (ToM) is the ability to attribute and reason about mental states
of others, such as knowledge, beliefs, and intentions [30,10]. ToM can be used
recursively. For example, if Amy knows that Ben knows that Amy knows that
there will be a surprise party, Amy is using second-order ToM (ToM-2), by
reasoning about the way Ben is using his theory of mind to reason about her
own knowledge; and we are making a third-order attribution to Amy here. ToM
is commonly used to navigate social situations, and can improve the outcomes of
competitive [32,16], cooperative [28,13], and mixed-motive settings [39]. While
human ToM capabilities develop over early childhood [41], and can be trained



2 Jakob Dirk Top, Catholijn Jonker, Rineke Verbrugge, and Harmen de Weerd

[40,38,1], it is generally found that there is a limit to human recursive ToM use,
which often does not exceed level 2 [27,7,12,9], and sometimes fails entirely [23].

Epistemic logic, a variant of modal logic, is used to formalize the kind of
recursive knowledge needed for ToM statements of the form ‘I know that you
know...’ [19]. However, epistemic logics and their extensions classically assume
logical omniscience, contrary to the commonly found limits on ToM. It has been
suggested that these models should incorporate recursive reasoning limits [17,39],
and there have been previous attempts to model similar aspects of bounded ratio-
nality [24,11,31,8]. The first formal attempt to incorporate ToM-like limitations
in epistemic logic appears to be [22], which describes an approach close to our
purposes: They define the epistemic depth of a formula based on the nesting of
its modal operators. However, their approach does not cover Public Announce-
ment Logic (PAL, introduced in Section 2.2), which we require for our purposes,
and is a general approach that does not define how it can be used to encode the
specific attributes of ToM.

While formal methods often do not take into account the ToM limits found
in behavioral research, the latter does not regularly employ the tasks and models
commonly used in epistemic logic, such as epistemic puzzles. Epistemic puzzles,
like the Wise Men puzzle [25], Muddy Children puzzle [14], and the one described
in Section 2.1, are puzzles where a set of agents, in a partially observable world,
have to deduce unobservable facts using the epistemic statements of other agents.
In the literature, reproducible experiments using these puzzles, especially ones
yielding reusable data, appear sparse (see e.g. [18,20,8]).

The present paper attempts to bridge the gap between logic and (boundedly
rational) cognition. We build on the work of Cedegao and colleagues [8] by adding
ToM limitations to PAL, which we use to predict the answers of different ToM
levels in the game of Aces and Eights (explained in Section 2.1). We validate our
novel method on the data of Cedegao et al. [8] by using Random-Effects Bayesian
Model Selection (RFX-BMS) [33], which we use to estimate the frequencies of
different ToM levels among the participants of [8].

In recent work, parallel to ours, Arthaud and Rinard [2] create several logics
of public announcements which place a limit on the number of nested knowledge
operators an agent can understand. Before we continue, we note some key differ-
ences with our work. In [2], any nested knowledge operator increases a formula’s
depth, whereas we assume that only switching between knowledge operators for
different agents requires higher ToM [39]. There should be a quantitative dif-
ference between recursively reasoning about your own knowledge, and that of
others. In [2], a formula Kaφ is false if the depth of agent a is lower than that of
φ. Our ToM-0 agents act as if there are no relations for other agents. If an agent
has no outgoing relations, it vacuously knows everything, so ToM-0 agents know
that all other agents know everything. This could be similar to young children
without ToM, who may think that their parents are all-knowing [5]. Lastly, we
move beyond purely formal methods by fitting our models on human data.

In Section 2, we explain the tasks, data, and methods we use for predictive
modeling. In Section 3, we present the results of our novel predictive modeling
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Fig. 1. (left) Model before announcements. Reflexive edges omitted for clarity.

Fig. 2. (right) State AA8888 in the ToM model before and after player 0 announces
‘I do not know my cards’. This is a close-up of the orange rectangle in Figure 1, with
added ToM levels. Refer to Section 2.4 for an in-depth explanation.

method, and compare it to the results we obtain when applying Random-Effects
Bayesian Model Selection to the models of [8]. Lastly, in Section 4, we discuss
our findings and identify possible shortcomings and directions for future work.

2 Methods

Here, Sections 2.1 through 2.3 describe existing work, leading into our novel
work as described in Sections 2.4 and 2.5.

2.1 The game of Aces and Eights

Aces and Eights [14] is a three-player epistemic game where each player receives
two cards out of a deck of four Aces and four Eights. Each player can only see the
four cards held by the other two players. No player can see her own cards or the
two remaining cards. Players take turns, in a fixed order, announcing whether
or not they know the ranks of the cards they are holding — a card’s suit does
not matter. These announcements provide information that may allow players
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to work out which cards they have. Players are collectively informed of all these
rules, allowing common knowledge of the game rules to arise.4

Let us introduce the notation employed throughout this paper. We use ‘player
0’, ‘player 1’, and ‘player 2’ (or, in short, ‘0’, ‘1’ and ‘2’) for the player that makes
the first, second, and third announcement each round, respectively. Suppose 0
has two aces (AA), 1 has two eights (88), and 2 has two eights (88). We denote
the state of this game as AA8888, where the first two symbols are 0’s cards,
the second two symbols are 1’s cards, and the third two symbols are 2’s cards.
In this state, 0 knows her cards. She sees that all available Eights are held by
the other two players, so she must have two Aces. After 0 announces ‘I know
my cards’, 1 and 2 can also know their cards, because they can attribute this
reasoning to 0. For holding one Ace and one Eight (or one Eight and one Ace,
as order does not matter), we write ‘8A’.

Cedegao et al. [8] discuss an experiment where each of 306 participants played
ten games of Aces and Eights with two computer players that are perfect logical
reasoners. Participants were recruited and played online, on the Prolific platform.
The order and selection of games varied across participants, but each participant
played one game requiring epistemic level 0 (EL-0, see Section 2.3) to solve,
three games requiring EL-1, and two games each requiring EL-2, EL-3, and EL-
4 (retrieved from their code). Participants switched between playing as player 0,
1, and 2 across games. Participants knew the rules and knew that the computer
agents gave perfect answers. A game ended if the participant answered ‘I know
my cards’, if the participant answered incorrectly (including answering ‘I don’t
know’ when they could have known), or if playing more rounds would not provide
more information. Participants responding with ‘I know my cards’ also had to
state the cards they thought they had. Participants were paid $5 with a $0.50
bonus for each game correctly solved. Participants were excluded if they failed
more than 20% of attention checks, spent more than 87 minutes, gave impossible
responses according to the rules, or had data recording errors. Following [8], this
paper only uses the data for the remaining 211 participants.

2.2 Public Announcement Logic

Public Announcement Logic (PAL) [29,3,4] is an extension of epistemic logic that
models how the knowledge of agents changes after public announcements are
made. Here, the knowledge of all agents in some epistemic situation is encoded
in a Kripke model (thus, assuming logical omniscience). A Kripke model can be
represented using a directed graph. The graph for Aces and Eights is found in
Figure 1. Each node, or state, is a possible situation, such as the distribution
of cards in Aces and Eights. Each edge is labelled with player(s), and indicates
uncertainty for those players: A player i edge from state s1 to s2 means ‘if s1 is
the true state (the state corresponding to the actual distribution of cards), then
player i considers it possible that s2 is the true state’ (here, we may have s1 = s2).

4 For solving the game of Aces and Eights, all players also need to be truthful, perfect
logical reasoners, and there needs to be common knowledge of this.
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For example, if 2 sees that 0 has 8A and 1 has 88, then 2 considers it possible
that she has either 8A or AA, so there is a symmetric player 2 edge between
8A888A and 8A88AA, as well as reflexive edges at both states. This situation
can be found in Figure 1, where it is indicated with a cyan, dashed, rectangle
(reflexive edges omitted). If, in state s, all outgoing player i edges connect to
worlds where i has the same cards, then i knows her cards. An example of this
is player 0 in AA8888, found in the solid orange rectangle in Figure 1.

2.3 Bounded models

Cedegao et al. [8] model an epistemic level l as follows: Take as an agent’s
initial states those states that the agent considers possible based on the game
rules and the cards held by the other two players. For example, if agent 1 sees
that 0 holds AA and 2 holds 8A, then agent 1’s initial states are AA888A and
AA8A8A. Modifying Definition 2.32 of [6], the height of a state is defined by
induction: the height of all initial states is 0, and the states of height n+1 are the
immediate successors (states that can be reached in one step along any outgoing
edge) of states of height n that have not yet been assigned a height smaller
than n+1. States with height l are marked peripheral states, and their outgoing
edges are removed. States with a height exceeding l are removed entirely. When
an announcement is made, a bounded model is updated by removing those non-
peripheral states (and connecting edges) where the announced formula is false.
Answers are based on the remaining initial states. Since our models differ from
those in [8], we use ‘ToM order’ when talking about our models, and ‘epistemic
level’ (EL) when talking about the models of [8].

Since all states other than the peripheral states have the same relations as the
full model, which is an S5(3)-model, Cedegao’s models allow for paths with an
infinite number of switches between different agents (e.g., . . . ⟨sn−1, sn⟩ ∈ R(0),
⟨sn, sn+1⟩ ∈ R(1), ⟨sn+1, sn+2⟩ ∈ R(0), . . .). We argue that paths with infinitely
many perspective switches are contrary to human recursive ToM limits. Further-
more, an agent with epistemic level 4, playing Aces and Eights, uses the same
graph as a logically omniscient agent. In contrast to Cedegao and colleagues [8],
we instead attempt to limit the number of recursive reasoning steps an agent
can use, as outlined in the next section.

2.4 Theory of Mind models

This section introduces our novel methods for modeling ToM, in a logic we call
TOMPAL. We work in the language LK[](A,P ), taken directly from [37]:

Definition 1. The language of public announcement logic is inductively defined

LK[](A,P ) ∋ φ ::= p | ¬φ | (φ ∧ φ) | Kiφ | [φ]φ

with i ∈ A, a set of agents, and p ∈ P , a finite set of propositional atoms.
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The usual abbreviations are used for ∨, →, and ↔. For ¬Ki¬φ we use Miφ.
We consider that repeated nestings of knowledge operators for the same agent

do not require additional ToM levels to be understood (see [39]), and that rea-
soning about one’s own knowledge does not require ToM at all. Instead, we as-
sume only switching to the perspective of a different agent requires an additional
level of ToM. For example, player 0 needs ToM-2 to reason about the sentence
K0K0K1K1K1K0p.5 When an agent switches perspectives, she attributes her
own order, minus one, to the other agent. To keep track of this, we modify the
definition of models in [36] by adding a map T , as follows:

Definition 2. A ToM model M = (S,R, V, T ) consists of a non-empty set of
states S, an accessibility function R : A→ P(S×S), a valuation V : P → P(S),
where V (p) represents the set of states where p is true, and a ToM map T : S →
P(A×N0), which maps each state to a set of tuples ⟨i, l⟩ with i ∈ A and l ∈ N0.
For s ∈ S, i ∈ A, and l ∈ N0, the pair (M, (s, (i, l))) is a perspective state.

Intuitively, having ⟨i, l⟩ ∈ T (s) means ‘agent i, at ToM order l, has not yet
eliminated state s due to new information’. Conversely, ⟨i, l⟩ ̸∈ T (s) means ‘agent
i, at ToM order l, either due to some previous announcement no longer considers
state s to be possible, or did not consider it possible to begin with’.

Visually, to each state in the model found in Figure 1 we add one row for
each player, consisting of the player’s name, followed by a colon, followed by
that player’s possible ToM levels, e.g., ‘0: 0, 1, 2, 3, 4, 5’ at state s means
⟨0, 0⟩ ∈ T (s), ⟨0, 1⟩ ∈ T (s), . . . , ⟨0, 5⟩ ∈ T (s). An example for state AA8888 can
be found in the upper half of Figure 2. Here, considering it possible that the
actual distribution of cards is AA8888 is consistent with reasoning at ToM levels
0 through 5 for all players. In our software implementation of Aces and Eights,
we ignore ToM levels beyond 5, because these yield identical answers to ToM-5.

A perspective state is an epistemic state viewed from the perspective of agent i
at ToM order l; such states are used in our semantics. The semantics of TOMPAL
are a modification of those in [37] and are as follows:

Definition 3. Assuming a ToM model M = (S,R, V, T ), i ∈ A, and l ∈ N0:

M, (s, (i, l)) |= p ⇔ s ∈ V (p)
M, (s, (i, l)) |= ¬φ ⇔M, (s, (i, l)) ̸|= φ
M, (s, (i, l)) |= φ ∧ ψ ⇔M, (s, (i, l)) |= φ and M, (s, (i, l)) |= ψ
for i = j : M, (s, (i, l)) |= Kjφ⇔M, (t, (j, l)) |= φ for all (t, (j, l)) with

⟨s, t⟩ ∈ R(j) and ⟨j, l⟩ ∈ T (t)
for i ̸= j : M, (s, (i, l)) |= Kjφ⇔M, (t, (j, l − 1)) |= φ for all (t, (j, l − 1)) with

⟨s, t⟩ ∈ R(j) and ⟨j, l − 1⟩ ∈ T (t)
M, (s, (i, l)) |= [φ]ψ ⇔M, (s, (i, l)) |= φ implies M |φ, (s, (i, l)) |= ψ

5 Note that this differs from [11], where the horizon of a player i at (M, s) contains all
states player i can ‘reach’ by taking one step along one of her own edges, followed
by any number of steps along any agent’s edges. Closer to our intentions, but more
general, is the notion of admissibility on E [22,24].
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where the model restriction M |φ = (S,R, V, T ′) is defined as ⟨i, l⟩ ∈ T ′(s) iff
⟨i, l⟩ ∈ T (s) and [M, (s, (i, l)) |= φ or [l = 0 and φ contains an operator Kj with
i ̸= j]].

We make three deviations from the usual semantics for public announcement
logic: first, formulas are interpreted at a perspective state M, (s, (i, l)). They are
true or false from the perspective of a specific agent with a specific ToM order.
Secondly, our knowledge operator has two clauses: when an agent reasons about
her own knowledge, she does not switch perspectives. When an agent reasons
about the knowledge of a different agent, she switches perspectives to the other
agent, and attributes her own ToM order, minus one, to the other agent. In
doing so, a ToM-0 agent attributes ToM-(-1) to other agents. Since by definition
we have ⟨i,−1⟩ ̸∈ T (s) for all i and s, a ToM-0 agent reasons as if there are no
outgoing relations for other agents. Lastly, we modify the model restriction such
that tuples ⟨i, l⟩ are removed instead of states. A ToM-0 agent cannot switch
perspectives, and therefore ‘ignores’ announcements that she cannot understand
because they contain K-operators for other agents. 6

Next, we show some theorems that capture the properties of TOMPAL. First,
we want ToM-0 agents to ignore announcements they do not understand. From
a ToM-0 agent’s perspective, no tuples are removed due to such announcements:

Theorem 1. If φ contains a Kj operator, then for all M, (s, (i, 0)) with i ̸= j:

M, (s, (i, 0)) |= (φ→ ψ) ↔ [φ]ψ.

Proof. The key point is showing that T ′ = T and hence M |φ = M . Details
are left to the reader.

Secondly, ToM-0 agents should act as if there are no outgoing relations for
other agents, so we should have:

Theorem 2. For all M, (s, (i, 0)) with i ̸= j: M, (s, (i, 0)) |= Kjφ.

Proof. The key point is that there are no (t, (j,−1)) with ⟨s, t⟩ ∈ R(j) and
⟨j,−1⟩ ∈ T (s), due to the definition of T . Details are left to the reader.

Note that Theorem 2 implies that M, (s, (i, 0)) |= Kjφ ∧Kj¬φ when i ̸= j.
Lastly, there should be no paths which infinitely alternate between differ-

ent agents, as ToM puts a limit on the number of times any agent can switch
perspectives:

Theorem 3. For all non-empty sequences (Mj1Mj2 , . . . ,Mjn−1 ,Mjn) of
M-operators such that |{k : jk ̸= jk+1}| > l, respectively for all M, (s, (i, l)) and
for all M, (s, (i, l + 1)):

Clause 1: M, (s, (i, l)) |= ¬Mj1Mj2 . . .Mjn−1
Mjnψ for i = j1

Clause 2: M, (s, (i, l + 1)) |= ¬Mj1Mj2 . . .Mjn−1
Mjnψ for i ̸= j1

6 We use l = 0 as the only special case, but for situations other than Aces and Eights
we need a more general solution, found in Appendix A. Furthermore, our semantics
can be made equivalent to one with the usual knowledge operator if we ‘unfold’ our
models such that we have R : (A× N0) → P(S × S).
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Proof. First, we denote Mj1Mj2 . . .Mjn−1
Mjn as Mn. We rewrite ¬Mnψ as

Kn¬ψ, which, as we prove for all ψ ∈ LK[], we rewrite to Knψ. We prove the
theorem through mutual induction over l.

Base case, clause 2: our base case is that for all M, (s, (i, 0)) with i ̸= j1:
M, (s, (i, 0)) |= Kj1 . . .Kjnψ, which is shown in Theorem 2 by taking Kj1 as Kj

and Kj2 . . .Kjnψ as φ.
Inductive step from clause 2 to clause 1: our induction hypothesis

is that for some arbitrary l ≥ 0, for all M, s, i with i ̸= j1: M, (s, (i, l)) |= Knψ.
We have to show that, for some non-empty sequence (Ki, . . . ,Ki), M, (s, (i, l)) |=
Ki . . .KiK

nψ. For s we write s1, for (Ki, . . . ,Ki) we write (Ki1 , . . . ,Kim). We
omit all text after the first ‘for all’:

M, (s1, (i, l)) |= Ki1Ki2 . . .KimK
nφ ⇔

M, (s2, (i, l)) |= Ki2 . . .KimK
nφ for all (s2, (i, l)) with

⟨s1, s2⟩ ∈ R(i) and ⟨i, l⟩ ∈ T (s2) ⇔
...

...
...

M, (sm, (i, l)) |= KimK
nφ for all . . . ⇔

M, (sm+1, (i, l)) |= Knφ for all . . .

The latter holds because of our induction hypothesis.
Inductive step from clause 1 to clause 2: our induction hypothesis

is M, (s, (i, l)) |= Knψ for some arbitrary M, (s, (i, l)) with l ≥ 0, and i = j1.
We have to show that for i ̸= k, M, (s, (k, l + 1)) |= Knψ. Both are equivalent
to M, (t, (j1, l)) |= Kj2 . . .Knψ for all (t, (j1, l)) with ⟨s, t⟩ ∈ R(j1) and ⟨j1, l⟩ ∈
T (t).

By starting at our base case for clause 2 and alternating between both in-
ductive steps, any instance of the theorem can be constructed. No base case for
clause 1 is needed.

Aces and Eights. For Aces and Eights, we use A = {0, 1, 2} and
P = {880, 8a0, aa0, 881, 8a1, aa1, 882, 8a2, aa2}, where 880 means ‘agent 0 is hold-
ing two eights’, 8a1 means ‘agent 1 is holding an Ace and an Eight’, et cetera.
S and R are as depicted in Figure 1. V is as would be expected. For example,
V (aa0)∩V (881)∩V (882) = {AA8888}. We have ⟨i, l⟩ ∈ T (s) for all s ∈ S, i ∈ A,
and l ∈ N0 (though we do not consider l > 5). Agent i announcing ‘I know my
cards’ is a public announcement of Ki88i ∨Ki8ai ∨Kiaai, announcing ‘I do not
know my cards’ is a public announcement of its negation.

Consider state AA8888 in the top half of Figure 2, with for AA8888 only
⟨AA8888, AA8888⟩ ∈ R(0). As an example, we show what happens to this state
when agent 0 announces that she does not know her cards (AA8888 may not be
the true state). For brevity, we use the simpler announcement ‘I do not know that
I have two Aces’. We compute T ′(AA8888) forM |¬K0aa0 (and henceM |¬K0aa0
itself). We consider each type of tuples on a case by case basis:

For tuples of the type ⟨i, 0⟩ with i ̸= 0, the formula contains an operator Kj

with i ̸= j and l = 0, so, by definition, these tuples are not removed.
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For tuples of the type ⟨i, l⟩ with i ̸= 0 and l > 0, we have that l ̸= 0, so we
have to check whether M, (AA8888, (i, l)) |= ¬K0aa0. If not, they are removed.
We use a series of equivalences:

M, (AA8888, (i, l)) |= ¬K0aa0 ⇔ (definition of ¬)
M, (AA8888, (i, l)) ̸|= K0aa0 ⇔ (def. of K)
M, (t, (0, l − 1)) ̸|= aa0 for some (t, (0, l − 1)) with
⟨AA8888, t⟩ ∈ R(0) and ⟨0, l − 1⟩ ∈ T (AA8888) ⇔ (def. of R(0))

M, (AA8888, (0, l − 1)) ̸|= aa0 for ⟨0, l − 1⟩ ∈ T (AA8888).

We have ⟨0, 0⟩, ⟨0, 1⟩, . . . , ⟨0, 5⟩ ∈ T (AA8888) and AA8888 ∈ V (aa0), so
M, (AA8888, (i, l)) |= ¬K0aa0 is false for any i ̸= 0 and l > 0. Hence, all tuples
of the type ⟨i, l⟩ with i ̸= 0 and l > 0 are removed. For similar reasons, all tuples
of the type ⟨0, l⟩ for all l are also removed. The resulting T ′(AA8888) can be
found in the bottom half of Figure 2.

Answers With these TOMPAL models, we can model which answer any player
i with ToM level l would give, given a distribution of cards (corresponding
to state s) and a sequence of previous announcements, as follows: Using the
methods previously described in this section, update the model with all pre-
vious announcements in order. Then, if exactly one of M, (s, (i, l)) |= Ki88i,
M, (s, (i, l)) |= Ki8ai, and M, (s, (i, l)) |= Kiaai holds, player i answers ‘I know
my cards’, and states the cards she has. In any other case, player i answers that
she does not know her cards. Note that this deviates from standard epistemic
logic where, if there are no outgoing edges for an agent i, all statements of the
type ‘agent i knows φ’ are true, whereas all statements ‘agent i does not know φ’
are false. Recall from Section 1 that we will use TOMPAL to predict the answers
and usage of different ToM levels in [8]’s data of Aces and Eights. To be able to
employ our statistical methods, we need our models to give single answers. Not
only is ‘I do not know’ the most common answer in the data, but it is also an
intuitively good response when you consider nothing to be possible.

2.5 Random-Effects Bayesian Model Selection

Random-Effects Bayesian Model Selection (RFX-BMS) is a statistical method
that estimates the frequencies of a set of strategies occurring in a population.
Whereas fixed-effects Bayesian model selection methods assume there is a single
strategy which best fits all participants, RFX-BMS assumes each subject was
drawn from a fixed distribution of strategies, and estimates this distribution. Un-
like Maximum Likelihood Estimation, RFX-BMS allows us to make more general
claims about this distribution, and is robust to small differences between partic-
ipants and strategies [33,9,38]. In our case, we estimate the frequencies of ToM
levels in the participant population of Cedegao et al. [8]. RFX-BMS uses equa-
tion (14) of [33], which maximizes the log-likelihood of each participant using
each ToM level by iteratively updating the strategy frequencies until conver-
gence. This log-likelihood is n(1 − ε) · ln(1 − ε) + nε · ln (p · ε), where a ToM
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level’s error rate ε for a participant is its number of incoherent predictions for
that participant, divided by n, the total number of decision points of the par-
ticipant. A predicted answer is coherent if it is the same as the participant’s
answer, otherwise it is incoherent. A decision point is a turn in a game where
a participant has to give an answer. The parameter p is a penalty coefficient,
which is applied when a participant does not follow a certain ToM level, but
does match its actions. We set it to 0.5. Predicted answers are generated as de-
scribed at the end of Section 2.4. We deviate from [8], where models are fitted
to full games instead of decision points. After all, participants can have multiple
decision points in each game (one for each round).

In addition to ToM levels 0 through 5, we also fit a random model. We
determine the best fitting random model by considering that each player guesses
among the four options with a fixed but personal probability. The log-likelihood
for the random model is ∑

a∈Ans
a · ln(

a

n
)

where n is the total number of decision points, and Ans = ⟨k¬, k88, k8A, kAA⟩
is a list of numbers, where we define k¬ as the number of times the participant
answered ‘I do not know my cards’, k88 as the number of times the participant
answered ‘I know I have two Eights’, et cetera.

Given these likelihoods, RFX-BMS estimates a vector α, containing one ele-
ment for each ToM level and an additional element for the random model.7

3 Results

In Section 3.1, we explore the use of RFX-BMS by combining it with the epis-
temically bounded models of Cedegao and colleagues [8], as outlined in Section
2.3. In Section 3.2, we use the TOMPAL models introduced in Section 2.4 as
models in RFX-BMS (as described in Section 2.5), which we use to predict the
frequencies of each ToM level in the data of [8].

3.1 Predicted epistemic levels of participants

Before employing our novel models, we validate the use of RFX-BMS by using
it to estimate the relative frequencies of epistemic levels for subjects in [8] by
using as model a non-stochastic version of SUWEB, the best-fitting model in [8],
which employs the bounded models described in Section 2.3. SUWEB models
have an update probability, the probability with which a state is removed after
an announcement, and a noise parameter, the probability of the model guessing
‘I know’ when it does not know. We set these to 1 and 0, respectively. When
SUWEB considers no states to be possible, it answers ‘I know’ or ‘I don’t know’
7 All code used for this article can be found at https://github.com/jdtoprug/
EpistemicToMProject. Note that we implemented the model updates needed for
Aces and Eights and related games, and not a general logical framework.
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Fig. 3. In red, relative frequencies of each epistemic level and the random model as
predicted by RFX-BMS, for [8]’s data, using bounded models. In blue, the original fit
of [8]’s stochastic SUWEB models, which also are bounded models.

with equal probability. In these cases we have this non-stochastic SUWEB answer
‘I don’t know’ instead. We combine this non-stochastic SUWEB with RFX-BMS
as described in Section 2.5, in order to estimate the relative frequencies of each
epistemic level, as well as the random model, across all 211 participants.

The predicted frequencies of epistemic levels in the population can be found
in Figure 3. Here, the blue bars are the original fit of [8], obtained by using Maxi-
mum Likelihood Estimation to estimate SUWEB’s parameters and the epistemic
level (EL) of each participant. The red bars are the predictions of RFX-BMS
on non-stochastic SUWEB (EB), as explained in the previous paragraph. As a
reminder, both red and blue bars use bounded models as explained in Section
2.3. For non-stochastic SUWEB, less than 1% of the population is classified as
using the random model, which validates the epistemically bounded models pre-
sented in [8]. Over 40% of the population is classified as EL-2. This differs from
the original SUWEB, which fits over 45% of participants to EL-1. We believe
this is because many of the games that reportedly require levels 3 or 4 can be
correctly solved by simply answering ‘I don’t know’ in every round, which our
non-stochastic EL-2 models consistently do, as opposed to the original SUWEB
models, which sometimes answer ‘I know’ due to noise. Many participants that
were fitted as EL-3 or EL-4 can be reclassified as EL-2 users who use this heuris-
tic. For non-stochastic models, update probabilities are 1, which should make
higher-level behavior less similar to lower-level behavior, as it causes models to
say ‘I don’t know’ less frequently. Zero noise may also decrease similarity be-
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Fig. 4. Relative frequencies of each ToM level and the random model as predicted by
RFX-BMS, for the data of [8], using ToM models.

tween models, as noisy models are less likely to reach later rounds, where levels
can be distinguished. These effects should be reflected in our findings.8

3.2 Predicted ToM levels of participants

In this section, we employ the same methods as described in Section 3.1, using
our ToM models as described in Section 2.4, instead of [8]’s bounded models.

The predicted frequencies of ToM levels in the population can be found in
Figure 4. Less than 1% of the population is classified as using the random model,
which shows that participant behavior is better described as ToM reasoning
as described in Section 2.4 than it is described as guessing. Over 35% of the
population is predicted to use ToM-2. A surprising result is the peak at ToM-5:
it turns out that RFX-BMS estimates that 14% of the population fits ToM-5
better than any other ToM level. This is not dissimilar to [8], where 15% of
participants is fitted to epistemic level 4 (the rightmost blue bar in Figure 3).
In our models, in order to solve all games, ToM-5 is needed, whereas in [8],
non-stochastic EL-4 accomplishes the same.

When comparing the RFX-BMS results for the epistemically bounded and
ToM models, we see that the estimated frequency of ToM-2 users is lower than
that of EL-2 users. We believe this is because there are some games where non-
stochastic EL-2 correctly answers ‘I do not know my cards’ due to becoming
‘confused’ and removing all non-peripheral nodes, whereas our ToM-2 models
incorrectly answer ‘I know my cards’ due to mistakenly attributing ToM-1 to
the other players (which are ToM-5). For one such example, see Appendix B.
8 We cannot test these predictions as we do not have access to the computational

power required to fit the SUWEB model of [8] in a reasonable amount of time.
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Fig. 5. Distribution of 1-ε for the best-fitting ToM levels for each of the 211 partici-
pants. Mean 0.723, median 0.737, IQR 0.143. Crosses indicate participants for whom
the random model fits better than any of the ToM models. The vertical axis has no
meaning and is used to separate data points for improved readability.

To see how well, on average, our models’ predictions correspond to partic-
ipant behavior, the distribution of coherence across participants can be found
in Figure 5. A participant’s coherence is the number of coherent predictions for
that participant’s best-fitting model, divided by that participant’s total number
of decision points. Coherence is at least .736 for over half of the participants,
and only 15 participants have a coherence of 0.5 or lower. There are only six par-
ticipants where the random model has the best coherence, which are indicated
using an ×. Upon visual inspection of the data for the low-coherence outliers, it
seems that these participants frequently answered ‘I know my cards’ when they
could not, which our ToM models never do.

4 Discussion/Conclusion

Humans do not have the logical omniscience that modal logics based on Kripke
models presuppose [21,39]. For one, human ToM is limited [27,23]. In this paper
we propose a novel method of representing ToM limitations in Public Announce-
ment Logic, building on the work of Cedegao et al. [8] (see also [22] and [11]).
We use Random-Effects Bayesian Model Selection to predict the frequencies of
ToM levels in the data of [8], and find some striking differences and similarities
when comparing the estimates of ToM and epistemically bounded models.

We predict the majority of the participants of Cedegao and colleagues [8] to
be using ToM-2, possibly bolstered by the heuristic of answering ‘I don’t know’
in cases where a random answer would be given in the SUWEB model of [8].
For the latter, the majority of participants is fitted as Cedegao et al.’s epistemic
level 1 (EL-1). We believe this difference is due to SUWEB’s stochasticity, as
well as EL-2 and higher overestimating human (recursive) reasoning capabilities.
Our results are a refinement that show that participants are better described as
ToM-2 than ToM-1, where the former lies between non-stochastic EL-1 and
EL-2 in terms of game-solving capabilities. Our novel method also predicts a
portion of participants to use ToM-5: These participants’ answers more closely
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resemble ToM-5 than any other level. Since participants can solve many higher-
level puzzles by always answering ‘I don’t know’, it is difficult to distinguish
higher-order reasoning from heuristics, so it is important to emphasize that the
participants themselves may not necessarily be using fifth-order reasoning. We
recommend employing games where to be correct, one must eventually answer
‘I know’ as diagnostic cases in future research.

A drawback of our approach is that we do not consider deviations from our
ToM models’ predictions, even though some participants exhibit clear guessing
strategies where they answer ‘I know my cards’ when they cannot know. Also,
our models do not consider the possibility that agents may attribute different
levels of ToM reasoning to other players. For example, a ToM-2 model attributes
ToM-1 to every other agent, and does not consider the possibility that one agent
is using ToM-0, whereas another agent is using ToM-1. Furthermore, we assume
that participants use a single ToM level throughout the experiment, but it could
be possible that some participants switch ToM levels between games or even
rounds. Lastly, recall that our models answer ‘I do not know my cards’ when there
are no outgoing edges. When this answer is changed to a different answer, or any
random distribution over the four answers, we find that mean coherence never
drops under 0.72. However, we assume that all participants use the same strategy
in such cases, whereas a richer model could try to find the best-fitting answering
behavior for each player. In future work it may be possible to incorporate all these
behaviors in our models, though even without covering these cases our models
have a mean 0.723 coherence - a decent fit, and an indication that participant
behavior can, at least partially, be described using our ToM models.

In Section 2.5, we calculate the log-likelihood of a ToM level fitting a partici-
pant by introducing a penalty for deviating from our models, the value of which
strongly affects the relative fit of the random model compared to ToM models.
Random-Effects Bayesian Model Selection must assign each participant to one
of our defined models. Though we included ToM and random models, there may
be other models that fit even better. For example, participants may be using a
representation similar to the number triangles in [15], they may be generalizing
such as the participants in [18], or they may be using other strategies. More
research and data is needed to find all relevant behavioral features. Eye-tracking
data could be used to distinguish between strategies, allowing for more accu-
rate logically inspired models [26,35,34]. These models need not be based on
formal logics: we also encourage cognitive scientists to model higher-order ToM
in Aces and Eights. Nonetheless, we demonstrate that a large part of participant
behavior can be attributed to ToM limitations as represented in our models.
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Appendix A

This appendix describes how to extend our work beyond Aces and Eights.
In [22], concatenation of sequences is defined: e ◦ e′ = (i1, . . . , im, j1, . . . , jk)

for e = (i1, . . . , im), e′ = (j1, . . . , jk). The empty sequence is ϵ, and e◦ϵ = ϵ◦e = e.
The epistemic depth δ(F ) of a formula F is inductively defined as follows:

D0: δ(p) = {ϵ} for any p ∈ P ;
D1: δ(¬F ) = δ(F );
D2: δ(F → G) = δ(F ) ∪ δ(G);
D3: δ(∧Φ) = δ(∨Φ) = ∪F∈Φδ(F );
D4: δ(Ki(F )) = {(i) ◦ e : e ∈ δ(F )}.
D5 : δ([F ]G) = {f ◦ e : e ∈ δ(F ), f ∈ δ(G)}
We added D5, which is not present in [22]. Moving to novel work, we define the
ToM structure T⟨p,l⟩, with p ∈ A and l ∈ N0 inductively as follows:

Base Case: e ∈ T⟨p,l⟩ for every e = (i1, . . . , im) where 0 ≤ m ≤ l, and
for every ij ∈ e we have that ij ∈ A and [if 0 < j < m, then
ij ̸= ij+1]. If m = 0 then e = ϵ.

Inductive Step 1: If e ∈ T⟨p,l⟩, then (p) ◦ e ∈ T⟨p,l⟩
Inductive Step 2: If, for any e1, i, e2; e1 ◦ ((i) ◦ e2) ∈ T⟨p,l⟩, then

(e1 ◦ (i)) ◦ ((i) ◦ e2) ∈ T⟨p,l⟩
Our base case corresponds to our requirement that the number of ‘perspective
switches’ is limited by an agent’s ToM order. Inductive steps 1 and 2 correspond
to not switching perspectives, not requiring additional ToM.

For zero or more repetitions of i we write i∗. As an example, consider A =
{0, 1}. Then, T⟨0,2⟩ = {ϵ, (0∗), (1∗), (0∗, 1∗), (1∗, 0∗), (0∗, 1∗, 0∗)}.

We then modify our semantic definition of [φ]ψ in Definition 3:

M, (s, (i, l)) |= [φ]ψ ⇔ M, (s, (i, l)) |= φ implies M |φ, (s, (i, l)) |= ψ
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where we define the model restriction M |φ = (S,R, V, T ′) with ⟨i, l⟩ ∈ T ′(s) iff
⟨i, l⟩ ∈ T (s) and [M, (s, (i, l)) |= φ or [δ(φ) ̸⊆ T⟨i,l⟩]].

Note that δ(φ) ̸⊆ T⟨i,0⟩ is equivalent to “φ contains an operator Kj with
i ̸= j”, as T⟨i,0⟩ = {ϵ, (i∗)}. With this substitution, our proofs for Theorems 1-3
hold, and our models can be used with any announcements.

Appendix B

There are two games where non-stochastic EL-2 answers correctly whereas our
ToM-2 models answer incorrectly. In both of these, the participant is player
0. The distribution of cards in these games is AA8A88 and 8A8AAA. For the
former, we show the removal of tuples after each announcement in Table 1, where
each column is a relevant state, and each row corresponds to an announcement.
Column ordering corresponds to the order of states in Figure 1. The rightmost
column shows the next announcement, where the index denotes the player, k
is ‘I know my cards’, and k¬ is ‘I do not know my cards’. Tuples that will be
removed after the next announcement are red. After six announcements, player
0 at ToM-2 will incorrectly answer ‘I know my cards’, whereas at ToM-5 she will
answer ‘I do not know my cards’, which is the correct answer. When working
through the example, it is recommended to use Figure 1 as a companion.

AA8888 AA8A88 AAAA88 8AAA88 88AA88 8A8A88 next
0: 0,1,2,3,4,5 0: 0,1,2,3,4,5 0: 0,1,2,3,4,5 0: 0,1,2,3,4,5 0: 0,1,2,3,4,5 0: 0,1,2,3,4,5
1: 0,1,2,3,4,5 1: 0,1,2,3,4,5 1: 0,1,2,3,4,5 1: 0,1,2,3,4,5 1: 0,1,2,3,4,5 1: 0,1,2,3,4,5 0: k¬
2: 0,1,2,3,4,5 2: 0,1,2,3,4,5 2: 0,1,2,3,4,5 2: 0,1,2,3,4,5 2: 0,1,2,3,4,5 2: 0,1,2,3,4,5
0: 0: 0,1,2,3,4,5 0: 0,1,2,3,4,5 0: 0,1,2,3,4,5 0: 0,1,2,3,4,5 0: 0,1,2,3,4,5
1: 0 1: 0,1,2,3,4,5 1: 0,1,2,3,4,5 1: 0,1,2,3,4,5 1: 0,1,2,3,4,5 1: 0,1,2,3,4,5 1: k¬
2: 0 2: 0,1,2,3,4,5 2: 0,1,2,3,4,5 2: 0,1,2,3,4,5 2: 0,1,2,3,4,5 2: 0,1,2,3,4,5
0: 0: 0,1,2,3,4,5 0: 0,1,2,3,4,5 0: 0,1,2,3,4,5 0: 0 0: 0,1,2,3,4,5
1: 0 1: 0,1,2,3,4,5 1: 0,1,2,3,4,5 1: 0,1,2,3,4,5 1: 1: 0,1,2,3,4,5 2: k¬
2: 0 2: 0,1,2,3,4,5 2: 0,1,2,3,4,5 2: 0,1,2,3,4,5 2: 0 2: 0,1,2,3,4,5
0: 0: 0,1,2,3,4,5 0: 0 0: 0,1,2,3,4,5 0: 0 0: 0,1,2,3,4,5
1: 0 1: 0,1,2,3,4,5 1: 0 1: 0,1,2,3,4,5 1: 1: 0,1,2,3,4,5 0: k¬
2: 0 2: 0,1,2,3,4,5 2: 2: 0,1,2,3,4,5 2: 0 2: 0,1,2,3,4,5
0: 0: 0,1,2,3,4,5 0: 0 0: 0 0: 0 0: 0,1,2,3,4,5
1: 0 1: 0,1,2,3,4,5 1: 0 1: 0,1 1: 1: 0,1,2,3,4,5 1: k
2: 0 2: 0,1,2,3,4,5 2: 2: 0,1 2: 0 2: 0,1,2,3,4,5
0: 0: 0,1,2,3,4,5 0: 0 0: 0 0: 0 0: 0,1,2,3,4,5
1: 1: 0,1,2,3,4,5 1: 1: 1: 1: 0,1,2,3,4,5 2: k¬
2: 0 2: 0,1,2,3,4,5 2: 2: 0 2: 0 2: 0,1,2,3,4,5
0: 0: 0,1,2,3,4,5 0: 0 0: 0 0: 0 0: 0,1,2,3,4,5
1: 1: 0,1,2,3,4,5 1: 1: 1: 1: 0,1,2,3,4,5
2: 0 2: 0,1,2,3,4,5 2: 2: 0 2: 0 2: 0,1,2,3,4,5

Table 1. Tuples at each relevant state during a series of announcements.
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Abstract. In this paper, we investigate local and global dynamic modal
operators which have the ability to modify the accessibility relation of a
model. For the global level, the logic GLV of global link variations based
on hybrid logic H(@) is introduced, which involves global link cutting,
adding and rotating simultaneously. A Hilbert-style calculus CGLV is pro-
vided. By constructing a family of canonical models inductively, we prove
that CGLV is strongly complete with respect to GLV. For the local level,
we extended the logic LLD(@, ↓) of link deletion introduced in [Li, 2020]
to LLV, which is based on the hybrid logic H(E, ↓ ) and contains local
dynamic operators for definable link cutting, adding and rotating. By
defining local named dynamic operators and providing recursion axioms
for them, we introduce a sound and strongly complete calculus CLLV for
LLV. Moreover, we show that for an arbitrary set X of global/local dy-
namic operators, the calculus CGLV(X) and CLLV(X) are still sound and
strongly complete w.r.t the logic GLV(X) and LLV(X), respectively.

Keywords: Dynamic logic · Hybrid logic · Axiomatization.

1 Introduction

Link variations in graph theory have been widely studied in recent years, with
applications in many areas such as knowledge graph, social network, and graph
game (cf. [11, 19, 7]). Link cutting and adding are crucial operations in link vari-
ation. These operations play important role in the knowledge graph, which is
a critical area in AI (cf. [11]). We illustrate how these operations work in the
updating process of the heterogeneous graph, a type of knowledge graph, by an
concrete scenario. In each heterogeneous graph, nodes and edges are labeled by
their entity name and data type. For example, in the heterogeneous graph in
Figure 1, the label ‘C : City’ means that the entity C is a city. We consider the
following 3-step update: (1) the highway T is abandoned, (2) a new highway U
is opened and (3) the starting point and destination of airline V is alter because
of the air traffic control. Then as it is shown in Figure 1, after the update, the
link labeled by ‘T : Highway’ is cut, a link from D to A labeled by ‘U : Highway’
is added and the link labeled by ‘V : airline’ rotates.

From a more interactive point of view, we can consider link variations in graph
games, which is also an important research area. Sabotage game is a classical
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example of game logic, in which global link cutting plays a crucial role (cf. [6,
3, 15]). Sabotage game involves two players and a directed graph. One player
(the traveler) aims to move successfully to designated locations, while the other
player (the demon) tries to prevent the traveler from reaching their destinations
by globally cutting one link in each round. Influenced by sabotage game, local
link cutting game was introduced in [12], which is the same as sabotage game
except that demon locally cut a branch of links in each round. As it is claimed
in [1], local link cutting operations are essentially different from the global one,
which makes these two games and their modal logics quite different.

Fig. 1. A heterogeneous graph and its updated graph.

Graph games are investigated using logical tools and many results on game
logics have been obtained in recent years (cf.[3, 1, 12]). Sabotage modal logic
SML was introduced in [13]. It is proved in [14] that SML over edge-labelled
transition systems is undecidable and lacks the finite model property. In [2], it
is proved that the logic SML is undecidable. Some decidable fragments of SML
are introduced in [2] by giving translations from global relation-changing modal
logics to hybrid logic with downarrow. Moreover, an axiomatization of hybrid
sabotage modal logic was presented in [8]. In [1], the logic SML is extended
by link adding and rotating operators. Expressive power and model checking
problem of these logics are studied. However, there is no systematic analysis of
axiomatization of dynamic logics for these different kinds of link variations. In
this work, based on hybrid logic, we first extend SML to GLV with global link
adding and rotating operators. A sound and complete axiomatization for GLV is
provided. Moreover, we introduce the logic LLV of local definable link variations
and provide also an axiomatization for it.

The paper is structured as follows. Section 2 gives preliminaries of the logic
GLV of global link variations, which is based on the hybrid logic H(@) and in-
volves link cutting, adding and rotating simultaneously. Section 3 provides a
Hilbert-style calculus CGLV for GLV and shows the soundness of CGLV. In Sec-
tion 4, we prove that for arbitrarily chosen set X of dynamic operators among
{+,−,⟳}, the calculus CGLV(X) is strongly complete with respect to GLV(X).
In Section 5, we breifly discuss the logic LLV of local (definable) link variations.
Axiomatizations of these logics are provided, and we show their strongly com-
pleteness by recursion axioms and local named operators.
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2 Logic of Global Link Variation

2.1 Preliminaries of GLV

We start by introducing the formal language of the logic GLV, which is a modal
logic based on the hybrid logic H(@) (cf. [10]). Let Prop = {pn : n ∈ ω} be a
countable set of propositional variables.

Definition 1 (Language). Let Nom = {an : n ∈ ω} be a set of nominals which
is disjoint from Prop. The language LNom of GLV over Nom is defined as follows:

LNom ∋ φ ::= a | p | ¬φ | φ ∧ ψ | ♢φ | @iφ | ⟨+⟩φ | ⟨−⟩φ | ⟨⟳⟩φ

where p ∈ Prop and a ∈ Nom. Abbreviations ⊥, ∨, →, ↔ and □ are defined as
usual. For each ◦ ∈ {+,−,⟳}, the operator [◦] is defined by [◦] = ¬⟨◦⟩¬.

Definition 2 (Model). A model for GLV is a tuple M = (W,R, V ), where W
is a non-empty set, R ⊆W ×W a binary relation on W and V : Prop∪Nom →
P(W ) a valuation function such that V (a) is a singleton set for each a ∈ Nom.

For each model M = (W,R, V ) and nominal a, let ā to denote the point w ∈W
with w ∈ V (a).

Definition 3 (Truth conditions). Let M = (W,R, V ) be a model. Truth of
formula φ in M at w ∈W is defined inductively by:

M, w |= x iff w ∈ V (x), for all x ∈ Prop ∪ Nom
M, w |= ¬φ iff M, w ̸|= φ
M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ
M, w |= ♢φ iff M, u |= φ for some u ∈W such that Rwu
M, w |= @aφ iff M, ā |= φ
M, w |= ⟨+⟩φ iff there exists u, v ∈W such that

⟨u, v⟩ ̸∈ R and M|⟨u+v⟩, w |= ψ
M, w |= ⟨−⟩φ iff there exists u, v ∈W such that

⟨u, v⟩ ∈ R and M|⟨u−v⟩, w |= ψ
M, w |= ⟨⟳⟩φ iff there exists u, v ∈W such that

⟨u, v⟩ ∈ R and M|⟨u⟳v⟩, w |= ψ

where for each ◦ ∈ {+,−,⟳}, M|⟨u◦v⟩ = (W,R|⟨u◦v⟩, V ) is defined by setting

R|⟨u+v⟩ = R ∪ {⟨u, v⟩}, R|⟨u−v⟩ = R \ {⟨u, v⟩}

and

R|⟨u⟳v⟩ =

{
(R|⟨u−v⟩)|⟨v+u⟩, if ⟨u, v⟩ ∈ R;

R, otherwise.

A formula φ ∈ L is valid if M, w |= φ for all model M = (W,R, V ) and w ∈W .
Let GLV denote the set of all valid formulas in L.



4 Du and Chen

M0

=⇒
•

•

•

•

b

a

c

d

M1 = M0|⟨b̄−ā⟩
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Fig. 2. Updates of link varaitions for heterogeneous graph in Figure 1

These dynamic operators play important roles in investigating link variations
in directed graphs. An example is given in Figure 2.

It is shown in [1] that ⟨⟳⟩ cannot be defined by ⟨+⟩ and ⟨−⟩. Let us go a
bit deeper into the operator ⟨⟳⟩. The readers can see that R|⟨u⟳v⟩ is obtained
from R by replacing the link ⟨u, v⟩ with ⟨v, u⟩. To calculate the set R|⟨u,v⟩(w)
for some given model M = (W,R, V ) and points w, u, v ∈W , we have to check if
w ∈ {u, v} and ⟨u, v⟩ ∈ R. To simplify the discussion and proofs, for all nominals
a, b ∈ Nom, we define the formula γ⟳a,b by γ⟳a,b := ¬(a ∨ b) ∨ @a(¬♢b ∨ b). The
following proposition explains the intuition behind the formula γ⟳a,b.

Proposition 1. Let M = (W,R, V ) be a model, a, b ∈ Nom and w, u ∈W . Then
⟨w, u⟩ ∈ R|⟨ā⟳b̄⟩ iff (1) Rwu and ⟨ā, b̄⟩ ≠ ⟨w, u⟩, or, (2) Ruw and ⟨ā, b̄⟩ = ⟨u,w⟩.

As a corollary, M, w |= γ⟳a,b if and only if R(w) = R|⟨a⟳b⟩(w).

2.2 Global Named Dynamic Operators

With the hybrid operators @a, we can define many useful new operators. Let
a, b ∈ Nom, φ ∈ L, the operators ⟨a+ b⟩, ⟨a− b⟩ and ⟨a ⟳ b⟩ are defined by:

⟨a+ b⟩φ := (@a♢b ∧ φ) ∨ (@a¬♢b ∧ ⟨+⟩(@a♢b ∧ φ));

⟨a− b⟩φ := (@a¬♢b ∧ φ) ∨ (@a♢b ∧ ⟨−⟩(@a¬♢b ∧ φ));

⟨a ⟳ b⟩φ := (@a(¬♢b ∨ b) ∧ φ) ∨ (@a(♢b ∧ ¬b) ∧ ⟨⟳⟩(@a¬♢b ∧ φ)).

Operators of the form ⟨a+ b⟩, ⟨a− b⟩ and ⟨a ⟳ b⟩ are called named link adding,
cutting and rotating operators, respectively. Let ND(+), ND(−) and ND(⟳) be
the sets of all named link adding, cutting and rotating operators, respectively.
Formally speaking, for each ◦ ∈ {+,−,⟳}, ND(◦) = {⟨a ◦ b⟩ : a, b ∈ Nom}.

Let ND = ND(+)∪ND(−)∪ND(⟳) and SD =
⋃
n∈N NDn. Elements in the set

ND are called named dynamic operators (NDO). The set SD is consist of all finite
sequences of NDOs. For all σ, δ ∈ SD, we write σ∗δ for the concatenation of σ and
δ. For each σ = ⟨s0, · · · , sn−1⟩ ∈ SD, we write σφ for the formula s0 · · · sn−1φ.
For example, if σ = ⟨⟨a ⟳ b⟩, ⟨c+ d⟩⟩, then ♢p ∨ σq = ♢p ∨ ⟨a ⟳ b⟩⟨c+ d⟩q.

Lemma 1. Let M = (W,R, V ) be a model and w ∈ W . Then for all NDO
⟨a ◦ b⟩ ∈ ND, and formula φ ∈ L,

M, w |= ⟨a ◦ b⟩φ if and only if M|⟨ā◦b̄⟩, w |= φ.
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Proof. (1) ◦ = +. Suppose M, w |= ⟨a+ b⟩φ. Then M, w |= (@a♢b ∧ φ) ∨
(@a¬♢b ∧ ⟨+⟩(@a♢b ∧ φ)). Suppose M, w |= @a♢b ∧ φ. Then M, ā |= ♢b and
M, w |= φ. Then ⟨ā, b̄⟩ ∈ R, which entails M = M|⟨ā+b̄⟩ and so M|⟨ā+b̄⟩, w |= φ.
Suppose M, w |= @a¬♢b∧⟨+⟩(@a♢b∧φ). Then M, ā ̸|= ♢b and there are u, v ∈W
with M|⟨u+v⟩, w |= @a♢b ∧ φ. Thus ⟨ā, b̄⟩ ∈ R|⟨u+v⟩ and M|⟨u+v⟩, w |= φ. Note
that ⟨ā, b̄⟩ ̸∈ R, we see ⟨ā, b̄⟩ = ⟨u, v⟩ and so M|⟨ā+b̄⟩, w |= φ.

Suppose M|⟨ā+b̄⟩, w |= φ. Assume ⟨ā, b̄⟩ ∈ R. Then R|⟨a,b⟩ = R and so
M, w |= @a♢b ∧ φ, which entails M, w |= ⟨a+ b⟩φ. Assume ⟨ā, b̄⟩ ̸∈ R. Since
⟨ā, b̄⟩ ∈ R|⟨ā+b̄⟩, we have M|⟨ā+b̄⟩, w |= @a♢b. Since M|⟨ā+b̄⟩, w |= φ, we see
M, w |= ⟨+⟩(@a♢b ∧ φ). Note that M, w |= @a¬♢b, we see M, w |= ⟨a+ b⟩φ.

(2) ◦ = −. The proof for this case is similar to (1).
(3) ◦ =⟳. Suppose M, w |= ⟨a ⟳ b⟩φ. Then M, w |= (@a(¬♢b ∨ b) ∧ φ) ∨

(@a(♢b ∧ ¬b) ∧ ⟨⟳⟩(@a¬♢b ∧ φ)). Suppose M, w |= @a(¬♢b ∨ b) ∧ φ. Since
M, w |= @a(¬♢b∨b), either ⟨ā, b̄⟩ ̸∈ R or ā = b̄ ∈ R(ā). Thus R = R|⟨ā⟳b̄⟩ and so
M|⟨ā⟳b̄⟩, w |= φ. Suppose M, w |= @a(♢b∧¬b)∧ ⟨⟳⟩(@a¬♢b∧φ). Then we have
⟨ā, b̄⟩ ∈ R, ā ̸= b̄ and M, w |= ⟨⟳⟩(@a¬♢b ∧ φ). Since M, w |= ⟨⟳⟩(@a¬♢b ∧ φ),
there exist u, v ∈ W such that ⟨u, v⟩ ∈ R and M|⟨u⟳v⟩, w |= @a¬♢b ∧ φ. Since
M|⟨u⟳v⟩, w |= @a¬♢b, we see ⟨ā, b̄⟩ ̸∈ R|⟨u⟳v⟩. Note that ⟨ā, b̄⟩ ∈ R, we have
⟨ā, b̄⟩ = ⟨u, v⟩ and so M|⟨u⟳v⟩ = M|⟨ā⟳b̄⟩. Hence, M|⟨ā⟳b̄⟩, w |= φ.

Suppose M|⟨ā⟳b̄⟩, w |= φ. Assume b̄ ̸∈ R(ā) or ā = b̄. Then R|⟨ā⟳b̄⟩ = R. Since
M, w |= @a(¬♢b ∨ b) and M, w |= φ, M, w |= ⟨a ⟳ b⟩φ. Assume Rāb̄ and ā ̸= b̄.
Then M, w |= @a(♢b ∧ ¬b). Note that ⟨ā, b̄⟩ ̸∈ R|⟨ā⟳b̄⟩, M|⟨ā⟳b̄⟩, w |= @a¬♢b.
Since M|⟨ā⟳b̄⟩, w |= φ, we see M, w |= ⟨⟳⟩(@a¬♢b∧φ). Hence, M, w |= ⟨a ⟳ b⟩φ.

Lemma 1 shows that NDOs do characterize the corresponding model updates,
as we desired.

3 Axiomatization of Logic of Link Variation

In this section, we introduce a Hilbert-style calculus CGLV for the logic GLV.
Axioms and rules are as follows where ◦ ∈ {+,−,⟳}:

(G1) Axioms and rules for hybrid logic H(@) (cf. [10])
(G2) K-axioms and Necessitation rules for ⟨a+ b⟩, ⟨a− b⟩ and ⟨a ⟳ b⟩.
(G3) Axioms and rules for ⟨a+ b⟩, ⟨a− b⟩ and ⟨a ⟳ b⟩:

(a) ⟨a ◦ b⟩x↔ x, for x ∈ Prop ∪ Nom and ◦ ∈ {+,−,⟳}
(b) ⟨a ◦ b⟩¬φ↔ ¬⟨a ◦ b⟩φ, for all ◦ ∈ {+,−,⟳}
(c) ⟨a ◦ b⟩(φ ∧ ψ) ↔ (⟨a ◦ b⟩φ ∧ ⟨a ◦ b⟩ψ), for all ◦ ∈ {+,−,⟳}
(d) ⟨a ◦ b⟩@iφ↔ @i⟨a ◦ b⟩φ, for all ◦ ∈ {+,−,⟳}
(e) ⟨a+ b⟩♢φ↔ (a ∧ @b⟨a+ b⟩φ) ∨ ♢⟨a+ b⟩φ
(f) ⟨a− b⟩♢φ↔ ♢(¬b ∧ ⟨a− b⟩φ) ∨ (¬a ∧ ♢⟨a− b⟩φ)
(g) ⟨a ⟳ b⟩♢φ↔ (γ⟳a,b ∧ ♢⟨a ⟳ b⟩φ) ∨ (¬γ⟳a,b ∧ ψ⟳

a,b), where
ψ⟳
a,b = (a ∧ ♢(¬b ∧ ⟨a ⟳ b⟩φ)) ∨ (b ∧ (♢⟨a ⟳ b⟩φ ∨ @a⟨a ⟳ b⟩φ))

(h) @a¬♢b ∧ ⟨a+ b⟩φ→ ⟨+⟩φ
(i) @a♢b ∧ ⟨a− b⟩φ→ ⟨−⟩φ



6 Du and Chen

(j) @a♢b ∧ ⟨a ⟳ b⟩φ→ ⟨⟳⟩φ
(M+)

@iσ(@a¬♢b ∧ ⟨a+ b⟩φ) → ψ

@iσ⟨+⟩φ→ ψ
, where σ ∈ SD and a, b are new to σ, φ, ψ, i.

(M−)
@iσ(@a♢b ∧ ⟨a− b⟩φ) → ψ

@iσ⟨−⟩φ→ ψ
, where σ ∈ SD and a, b are new to σ, φ, ψ, i.

(M⟳)
@iσ(@a♢b ∧ ⟨a ⟳ b⟩φ) → ψ

@iσ⟨⟳⟩φ→ ψ
, where σ ∈ SD and a, b are new to σ, φ, ψ, i.

Derivations in CGLV are defined as usual. For each formula φ, we write ⊢ φ if
there is a derivation of φ in CGLV. In (G3), we provide ‘recursion axioms’ (a-g) for
named dynamic operators. Moreover, axioms (h-j) and the mix-rules show the
connections between the named operators and the original dynamic operators.

Theorem 1 (Soundness). For all formula φ ∈ L, ⊢ φ implies φ ∈ GLV

Proof. We consider only axioms and rules in (G3). Clearly, axioms (G3,a-d) and
(G3,h-j) are valid. Validity of (f) is shown in [9], and we will show that axioms
(e) and (g) are valid. Let M = (W,R, V ) be an arbitrary model and w ∈W .

(e, ⇒) Suppose M, w |= ⟨a+ b⟩♢φ. Then we see M|⟨ā+b̄⟩, w |= ♢φ and so
there is v ∈ R|⟨ā+b̄⟩(w) with M|⟨ā+b̄⟩, v |= φ. By Lemma 1, M, v |= ⟨a+ b⟩φ.
If ⟨w, v⟩ ∈ R, then M, w |= ♢⟨a+ b⟩φ. Suppose ⟨w, v⟩ ̸∈ R. Since R|⟨ā+b̄⟩ =

R ∪ {⟨ā, b̄⟩}, we see ⟨w, v⟩ = ⟨ā, b̄⟩. Thus M, w |= a and M, v |= b, which entails
M, w |= a ∧ @b⟨a+ b⟩φ.

(e, ⇐) Suppose M, w |= a ∧ @b⟨a+ b⟩φ. Then ā = w and M, b̄ |= ⟨a+ b⟩φ.
By Lemma 1, M|⟨ā+b̄⟩, b̄ |= φ. Since ⟨ā, b̄⟩ ∈ R|⟨ā+b̄⟩, M|⟨ā+b̄⟩, w |= ♢φ. Thus
M, w |= ⟨a+ b⟩♢φ. Suppose M, w |= ♢⟨a+ b⟩φ. Then there is v ∈ R(w) with
M, v |= ⟨a+ b⟩φ. By Lemma 1, M|⟨ā+b̄⟩, v |= φ. Since ⟨w, v⟩ ∈ R ⊆ R|⟨ā+b̄⟩, we
have M|⟨ā+b̄⟩, w |= ♢φ and so M, w |= ⟨a+ b⟩♢φ.

(g, ⇒) Suppose M, w |= ⟨a ⟳ b⟩♢φ. Then M|⟨ā⟳b̄⟩, w |= ♢φ, which entails
M|⟨ā⟳b̄⟩, v |= φ for some v ∈ R|⟨ā⟳b̄⟩(w). By Lemma 1, M, v |= ⟨a ⟳ b⟩φ. Suppose
M, w |= γ⟳a,b. By Proposition 1, R(w) = R|⟨a⟳b⟩(w) and so v ∈ R(w). Thus
M, w |= γ⟳a,b ∧ ♢⟨a ⟳ b⟩φ. Suppose M, w ̸|= γ⟳a,b. Then M, w |= @a(♢b ∧ ¬b) ∧
(a ∨ b), which entails Rāb̄, ā ̸= b̄ and w ∈ {ā, b̄}. Since Rāb̄, we see R|⟨ā⟳b̄⟩ =

(R \ {⟨ā, b̄⟩}) ∪ {⟨b̄, ā⟩}. Now we have two cases:
(1) w = ā. Since ā ̸= b̄, we see R|⟨a⟳b⟩(w) = R(w)\{b̄}. Since v ∈ R|⟨a⟳b⟩(w),

we see v ̸= b̄ and Rwv, which entails M, w |= ♢(¬b ∧ ⟨a ⟳ b⟩φ).
(2) w = b̄. Since ā ̸= b̄ and v ∈ R|⟨a⟳b⟩(w), we see v = ā or Rwv. If v = ā,

then M, w |= @a⟨a ⟳ b⟩φ. If Rwv, then M, w |= ♢⟨a ⟳ b⟩φ.
In both of these cases, we see M, w |= ψ⟳

a,b.
(g, ⇐) The proof proceeds by the following two parts:
(1) |= γ⟳a,b ∧ ♢⟨a ⟳ b⟩φ → ⟨a ⟳ b⟩♢φ. Suppose M, w |= γ⟳a,b ∧ ♢⟨a ⟳ b⟩φ.

Since M, w |= ♢⟨a ⟳ b⟩φ, there exists v ∈ R(w) such that M, v |= ⟨a ⟳ b⟩φ.
By Lemma 1, M|⟨ā⟳b̄⟩, v |= φ. Since M, w |= γ⟳a,b, by Proposition 1, R(w) =
R|⟨a⟳b⟩(w). Thus v ∈ R|⟨a⟳b⟩(w), which entails M|⟨a⟳b⟩, w |= ♢φ. By Lemma 1,
M, w |= ⟨a ⟳ b⟩♢φ.

(2) |= ¬γ⟳a,b ∧ ψ⟳
a,b → ⟨a ⟳ b⟩♢φ, where
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ψ⟳
a,b = (a ∧ ♢(¬b ∧ ⟨a ⟳ b⟩φ)) ∨ (b ∧ (♢⟨a ⟳ b⟩φ ∨ @a⟨a ⟳ b⟩φ)).

Suppose M, w |= ¬γ⟳a,b ∧ ψ⟳
a,b. Since M, w |= ¬γ⟳a,b, we have Rāb̄, ā ̸= b̄ and

w ∈ {ā, b̄}. Since Rāb̄, R|⟨ā⟳b̄⟩ = (R\{⟨ā, b̄⟩})∪{⟨b̄, ā⟩}. Now we have two cases:
(2.1) w = ā. Then M, w ̸|= b and R|⟨a⟳b⟩(w) = R(w)\{b}. Since M, w |= ψ⟳

a,b,
we see M, w |= a ∧ ♢(¬b ∧ ⟨a ⟳ b⟩φ). Then there exists v ∈ R(w) with M, v |=
¬b∧⟨a ⟳ b⟩φ. By Lemma 1, M|⟨ā⟳b̄⟩, v |= φ. Since b̄ ̸= v ∈ R(w), v ∈ R|⟨a⟳b⟩(w)
and so M|⟨a⟳b⟩, w |= ♢φ. By Lemma 1, M, w |= ⟨a ⟳ b⟩♢φ.

(2.2) w = b̄. Then M, w ̸|= a and R|⟨a⟳b⟩(w) = R(w) ∪ {ā}. Since M, w |=
ψ⟳
a,b, we see M, w |= b ∧ (♢⟨a ⟳ b⟩φ ∨ @a⟨a ⟳ b⟩φ). Suppose M, w |= ♢⟨a ⟳ b⟩φ,

then there exists v ∈ R(w) such that M, v |= ¬b ∧ ⟨a ⟳ b⟩φ. By Lemma 1,
M|⟨ā⟳b̄⟩, v |= φ. Note that v ∈ R(w) ⊆ R|⟨a⟳b⟩(w), we see M|⟨a⟳b⟩, w |= ♢φ
and so M, w |= ⟨a ⟳ b⟩♢φ. Suppose M, w |= @a⟨a ⟳ b⟩φ. Then M|⟨a⟳b⟩, ā |= φ.
Since ⟨w, ā⟩ ∈ R|⟨a⟳b⟩, we see M|⟨a⟳b⟩, w |= ♢φ and so M, w |= ⟨a ⟳ b⟩♢φ.

4 Completeness for CGLV

The aim of this section is to show the completeness for CGLV with respect to
GLV. The sketch of our proof is as follows: Let Γ ⊆ L be an arbitrarily fixed
named, pasted and mixed maximal consistent set of formulas. Then we construct
a family of canonical models based on Γ and show that these canonical models
characterize the behaviour of the dynamic operators. Finally, we show that Γ
is satisfied by one of those models. Note that every consistent set of formulas
can be extended to a named, pasted and mixed MCS in some properly extended
formal language, we are done.

Definition 4. Let L be a language and Γ ⊆ L a set of formulas. Then we say

– Γ is consistent, if ̸⊢ φ1 ∧ · · · ∧ φn → ⊥ for any φ1, · · · , φn ∈ Γ .
– Γ is L-maximal consistent, if Γ is consistent and ∆ ⊢ ⊥ for all Γ ⊊ ∆ ⊆ L.
– Γ is named, if i ∈ Γ for some nominal i ∈ Nom.
– Γ is pasted, if for all @i♢φ ∈ Γ , there is j ∈ Nom such that @i♢j∧@jφ ∈ Γ .
– Γ is mixed, if for all i ∈ Nom, σ ∈ SD and φ ∈ L, we have:

• if @iσ⟨+⟩φ ∈ Γ , then @iσ(@a¬♢b∧ ⟨a+ b⟩φ) ∈ Γ for some a, b ∈ Nom.
• if @iσ⟨−⟩φ ∈ Γ , then @iσ(@a♢b ∧ ⟨a− b⟩φ) ∈ Γ for some a, b ∈ Nom.
• if @iσ⟨⟳⟩φ ∈ Γ , then @iσ(@a♢b ∧ ⟨a ⟳ b⟩φ) ∈ Γ for some a, b ∈ Nom.

A set Γ is called an L-MCS if it is L-maximal consistent.

Lemma 2. Let L′ be a language obtained by extending L with a denumerable
set Nom0 of new nominals. Then every L-consistent set can be extended to a
named, pasted and mixed L′-MCS.

Proof. Let Γ be an L-consistent set and Γ0 = Γ ∪ {j0}. By the rule (Name),
one can readily check that Γ0 is L′-consistent. Let (φn)n∈N be an enumeration
of all formulas in L′. Then for each k ∈ N, we define the set Γk+1 as follows: If
Γk ∪ {φk} is L′-inconsistent, then Γk+1 = Γk. Otherwise,
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– Γk+1 = Γk ∪ {φk} ∪ {@i♢j ∧ @jψ} if φk is of the form @i♢ψ,
where j ∈ Nom0 is the first new nominal w.r.t Γk and φk.

– Γk+1 = Γk ∪ {φk} ∪ {@iσ(@a¬♢b∧ ⟨a+ b⟩ψ)} if φk is of the form @iσ⟨+⟩ψ,
where a, b ∈ Nom0 are new nominals w.r.t Γk and φk.

– Γk+1 = Γk ∪ {φk} ∪ {@iσ(@a♢b ∧ ⟨a ◦ b⟩ψ)} if φk is of the form @iσ⟨◦⟩ψ
(◦ ∈ {−,⟳}),where a, b ∈ Nom0 are new nominals w.r.t Γk and φk.

– Γk+1 = Γk ∪ {φk} if φk is not of the above forms.

In the construction above, by new nominals we mean those with minimal index
in Nom0. Let Γ ∗ =

⋃
n∈N Γn. By the rules (Paste), (M+), (M−) and (M⟳), Γk is

consistent for all k ∈ N. Then one can readily check that Γ ∗ is what we desired.

We now show the strong completeness of the calculus CGLV. Let Γ be a
fixed consistent set of L-formulas. Since L contains already a denumerable set
of nominals, by Lemma 2, we can assume that Γ itself is a named, pasted and
mixed L-MCS. It suffices to show that Γ is satisfiable.

Definition 5. For each j ∈ Nom, let ∆j = {φ : @jφ ∈ Γ}. Then the canonical
model induced by Γ is the tuple MΓ = ⟨WΓ , RΓ , V Γ ⟩, where

– WΓ = {∆i : i ∈ Nom}.
– RΓ∆i∆j iff @i♢j ∈ Γ .
– V Γ (x) = {w ∈WΓ : x ∈ w}, for all x ∈ Prop ∪ Nom.

Moreover, for each sequence σ ∈ SD, the σ-canonical model Mσ = (Wσ, Rσ, V σ)
induced by Γ is defined inductively as follows:

– Wσ = {wσ : w ∈WΓ }, where wσ = {φ : σφ ∈ w}.
– Rϵ = RΓ .
– If σ = σ′ ∗ ⟨a+ b⟩, then Rσwσvσ iff Rσ

′
wσ

′
vσ

′
or ⟨a, b⟩ ∈ w × v.

– If σ = σ′ ∗ ⟨a− b⟩, then Rσwσvσ iff Rσ
′
wσ

′
vσ

′
and ⟨a, b⟩ ̸∈ w × v.

– If σ = σ′ ∗ ⟨a ⟳ b⟩, then Rσwσvσ iff one of the following conditions holds:
(1) Rσ

′
wσ

′
vσ

′
and ⟨a, b⟩ ̸∈ w × v.

(2) Rσ
′
vσ

′
wσ

′
and ⟨b, a⟩ ∈ w × v.

– V σ(x) = {wσ ∈Wσ : x ∈ w}, for all x ∈ Prop ∪ Nom.

A family of canonical models are provided in Definition 5. These models are
proposed to ‘simulate’ the dynamic updates syntactically. Before going into the
details of the proof of Completeness theorem, let us introduce some basic prop-
erties of the canonical models.

Proposition 2. Let φ ∈ L, a, b ∈ Nom, σ, δ ∈ SD and w = ∆b ∈WΓ . Then

(1) wσ is an L-MCS.
(2) δφ ∈ wσ if and only if φ ∈ wσ∗δ.
(3) @aφ ∈ wσ if and only if φ ∈ (∆a)σ.
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Proof. For (1), we show first that wσ is consistent. Suppose there are formulas
ψ1, · · · , ψn ∈ wσ such that ⊢ ψ1∧· · ·∧ψn → ⊥. Then @bσψ1∧· · ·∧@bσψn ∈ Γ .
By (G2), we have ⊢ @bσψ1 ∧ · · · ∧@bσψn → @bσ⊥, which entails @bσ⊥ ∈ Γ . By
axiom (G3,a-c), @b⊥ ∈ Γ , which entails ⊥ ∈ Γ and contradicts the assumption.
To show that wσ is L-maximal, it suffices to show φ ̸∈ wσ implies ¬φ ∈ wσ.
Suppose φ ̸∈ wσ. Then @bσφ ̸∈ Γ and so ¬@bσφ ∈ Γ . By axiom (G3,b) and
(G1), @bσ¬φ ∈ Γ , which entails ¬φ ∈ wσ.

For (2), note that δφ ∈ wσ iff σδφ ∈ w iff φ ∈ wσ∗δ, we are done.
For (3), suppose w = ∆b. Then by (G3,d) and (G1) we see

@aφ ∈ wσ iff @bσ@aφ ∈ Γ iff @aσφ ∈ Γ iff φ ∈ (∆a)σ.

Proposition 2 is frequently applied in proofs of the following lemmas and theo-
rems. For example, we will conclude ψ ∈ wσ from ⊢ φ→ ψ and φ ∈ wσ. We do
not specify the application of Proposition 2 in what follows.

Lemma 3. For all NDO ⟨a ◦ b⟩ ∈ ND and σ ∈ SD, we define the function
f : Wσ →Wσ∗⟨a◦b⟩ by f : x 7→ x⟨a◦b⟩. Then

f : Mσ|⟨ā◦b̄⟩ ∼= Mσ∗⟨a◦b⟩.

Lemma 4. Let σ ∈ SD, w, v ∈WΓ . Then for all φ ∈ L,

(1) if Rσwσvσ and φ ∈ vσ, then ♢φ ∈ wσ.
(2) if ♢φ ∈ wσ, then there exists v ∈WΓ with Rσwσvσ and φ ∈ vσ.

The proofs of Lemma 3 and Lemma 4 are given in the Appendix. These two
lemmas show that the operator ♢ behave as we desired in all canonical models.

Lemma 5 (Truth Lemma). Let ψ ∈ L, w ∈WΓ and σ ∈ SD. Then

Mσ, wσ |= φ if and only if φ ∈ wσ.

Proof. The proof proceeds by induction on the complexity of φ.

(1) φ ∈ Prop ∪ Nom. By axiom (G3,a), ⊢ φ↔ σφ. Then we have
Mσ, wσ |= φ iff w ∈ V Γ (φ) iff φ ∈ w iff σφ ∈ w iff φ ∈ wσ

(2) Boolean and @ cases are taken cared by axioms (G3,b-d).
(3) φ is of the form ♢ψ. Then we see

♢ψ ∈ wσ iff Rσwσvσ and ψ ∈ vσ for some v ∈WΓ (Lemma 4)
iff Rσwσvσ and Mσ, vσ |= ψ for some v ∈WΓ (IH)
iff Mσ, wσ |= ♢ψ.

(4) φ is of the form ⟨+⟩γ. Suppose Mσ, wσ |= ⟨+⟩γ. Then there are uσ, vσ ∈Wσ

with ⟨uσ, vσ⟩ ̸∈ Rσ and Mσ|⟨uσ+vσ⟩, wσ |= γ. Let a, b ∈ Nom be nominals
such that ⟨ā, b̄⟩ = ⟨uσ, vσ⟩. Then by Lemma 3, Mσ′

, wσ
′ |= γ. By IH, γ ∈ wσ

′

and so ⟨a+ b⟩γ ∈ wσ. Since ⟨uσ, vσ⟩ ̸∈ Rσ, by Lemma 4(2), ♢b ̸∈ uσ, which
entails @a♢b ̸∈ wσ. By (G3,h), ⟨+⟩γ ∈ wσ. Suppose ⟨+⟩γ ∈ wσ. Since Γ
is mixed, we see there are a, b ∈ Nom such that @a¬♢b ∧ ⟨a+ b⟩γ ∈ wσ.
Then @a¬♢b ∈ wσ and γ ∈ wσ

′
. Since γ ∈ wσ

′
, by IH, Mσ′

, wσ
′ |= γ. By

Lemma 3, Mσ|⟨a+b⟩, wσ |= γ. Since @a¬♢b ∈ wσ, ♢b ̸∈ uσ. By Lemma 4(1),
⟨uσ, vσ⟩ ̸∈ Rσ. Hence Mσ, wσ |= ⟨+⟩γ.
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(5) φ is of the form ⟨−⟩γ or ⟨⟳⟩γ. The proof for this case is similar to (4), where
axioms (G3,i-j) are applied. Detials are omitted to save space.

By Lemma 5 and the arbitrariness of Γ , we see

Theorem 2. CGLV is strongly complete w.r.t. GLV.

Based on the given definitions and proofs, it is evident that by restricting
formal language L to any subset X of {+,−,⟳}, we can still achieve a sound
and complete axiomatization by just ignoring the parts for operators that do
not occur. Let X ⊆ {+,−,⟳}. Then we define

L(X) = {φ ∈ L : dynamic operators occur in φ is among X}.
Let GLV(X) = GLV ∩ L(X) and CGLV(X) be the calculus consist of axioms and
rules from CGLV in L(X). GLV(X) and CGLV(X) are called X-fragment of GLV
and CGLV, respectively. Then the following theorem holds:

Theorem 3. CGLV(X) is sound and strongly complete w.r.t. GLV(X).

5 Logic of Local Definable Link Variation

In the sections above, we consider the global link variations which involves one
link in each action, investigate their logics and provide complete axiomatizations
for them. As a variation of global link cutting operation, [12] suggests another
kind of link cutting operation, local (definable) link cutting, where a set of links
connected to the current point are involved simultaneously. With the results on
global link variations, it is natural to investigate the local definable operations
for link variations and their logics.

In [12], the definable link cutting operator [−φ] is introduced and its logic
LLD is investigated. Models of LLD are usual Kripke models, and the truth
condition of [−ψ]φ is given by:

(W,R, V ), w |= [−ψ]φ if and only if (W,R|⟨w−ψ⟩, V ), w |= φ,

where R|⟨w−ψ⟩ = R \ ({w}× JψK).1 Intuitively, the operation [−ψ] cuts the links
between the current point and the points where ψ holds. There are results on
expressive power of LLD, but the model checking problem is still open. Moreover,
there is no sound and complete axiomatization for LLD, even for LLD(@, ↓), the
logic obtained by adding hybrid operators ↓ and @ to LLD.

In what follows, we extend the logic LLD to the logic LLV of local link vari-
ations by adding local adding operator [+ψ], local rotating operator [⟳ψ] and
hybrid operators ↓ and E. By providing recursion axioms for the local dynamic
operators, we obtain a sound and strongly complete axiomatization for LLV.

The language Ll of LLV is given by

Ll ∋ φ ::= a | p | ¬φ | φ ∧ φ | ♢φ | Eφ |↓a.φ | [+φ]φ | [−φ]φ | [⟳φ]φ

1 JψK = {u ∈W : M, u |= ψ}
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where a ∈ Nom and p ∈ Prop. For each a ∈ Nom and φ ∈ Ll, we define
@aφ := E(a∧φ). Models of LLV are exactly models for the hybrid logic LLD(↓,E)
and semantics of the operators ↓a. and E (global existential operator) are as usual
(cf. [10]). Let M = (W,R, V ) be a model of LLV. For each w ∈ W and ψ ∈ Ll,
we set R(w,ψ) = JψK ∩ R(w) and R−1(w,ψ) = {⟨u,w⟩ : ⟨w, u⟩ ∈ R(w,ψ)}. For
◦ ∈ {+,⟳}, truth for the formula [◦ψ]φ is given by:

M, w |= [◦ψ]φ if and only if M|⟨w◦ψ⟩, w |= φ

where R|⟨w+ψ⟩ = R ∪ ({w} × JψK) and R|⟨w⟳ψ⟩ = (R \R(w,ψ)) ∪R−1(w,ψ).
As in Section 2, for each ◦ ∈ {+,−,⟳}, local named dynamic operators are

defined as follows: Let i ∈ Nom, φ ∈ Ll, the operator ⟨a ◦ φ⟩ is defined by:

⟨a ◦ φ⟩ψ :=↓b.@a[◦φ]@bψ,

where b is a new nominal with respect to φ, ψ and a. One should note that the
downarrow operator ↓ is crucial in this definition: the operators ⟨a ◦ φ⟩ allow
us change links ‘globally’, and we have to ‘go back to’ the original point. If
a formula φ ∈ Ll is of the form where only named operators occur, we call
it a named formula. For example, ↓a.@b[+p]@i♢q ∧ r is a named formula and
[+p]@a♢q ∧ r is not. Let Ln denote the set of all named formulas.

Lemma 6. Let φ ∈ Ll and a, b ∈ Nom nominals such that b does not occur in
{φ, a}. Then for all model M = (W,R, V ), w, u ∈W and ◦ ∈ {+,−,⟳},

(1) M, w |= @aφ if and only if M, ā |= φ.
(2) M|wb , u |= φ if and only if M, u |= φ.
(3) (M|wb )|⟨a◦φ⟩ ∼= (M|⟨a◦φ⟩)|wb .

Proof. The proof of (1) is trivial. For (2), the proof proceeds by induction on
the complexity of φ. (3) follows from (2) immediately.

As the following lemma shows, the local named dynamic operators behave
as we desired:

Lemma 7. Let M = (W,R, V ) be a model and w ∈W . Then for each a ∈ Nom,
◦ ∈ {+,−,⟳} and φ,ψ ∈ Ll,

M, w |= ⟨a ◦ ψ⟩φ if and only if M|⟨ā◦ψ⟩, w |= φ.

Proof. Note that ⟨a ◦ φ⟩ψ :=↓ b.@a[◦φ]@bψ for some nominal b ∈ Nom which
does not occur in {φ,ψ, a}, we have

M, w |= ⟨a ◦ ψ⟩φ iff M, w |=↓b.@a[◦ψ]@bφ
iff (M|wb )|⟨ā◦ψ⟩, w |= φ Lemma 6(1)
iff (M|⟨ā◦ψ⟩)|wb , w |= φ Lemma 6(3)
iff M|⟨ā◦ψ⟩, w |= φ Lemma 6(2)

In what follows, we introduce the calculus CLLV for the logic LLV. Axioms
and rules are as follows where ◦ ∈ {+,−,⟳}:
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(L1) Axioms and rules for hybrid logic H(E, ↓) (cf. [10])
(L2) Axioms for local named dynamic operators: for all ◦ ∈ {+,−,⟳},

(a) ⟨a ◦ ψ⟩x↔ x, for x ∈ Prop ∪ Nom
(b) ⟨a ◦ ψ⟩¬φ↔ ¬⟨a ◦ ψ⟩φ
(c) ⟨a ◦ ψ⟩(φ ∧ ψ) ↔ ⟨a ◦ ψ⟩φ ∧ ⟨a ◦ ψ⟩ψ
(d) ⟨a ◦ ψ⟩ ↓b.φ↔↓c.⟨a ◦ ψ⟩(φ[b := c])
(e) ⟨a+ ψ⟩♢φ↔ (♢⟨a+ ψ⟩φ ∨ (a ∧ E(ψ ∧ ⟨a+ ψ⟩φ)))
(f) ⟨a− ψ⟩♢φ↔ ((a ∧ ♢(¬ψ ∧ ⟨a− ψ⟩φ)) ∨ (¬a ∧ ♢⟨a− ψ⟩φ))

(g) ⟨a ⟳ ψ⟩♢φ↔ (a ∧ (♢(¬ψ ∧ ⟨a ⟳ ψ⟩φ) ∨ (♢a ∧ ⟨a ⟳ ψ⟩φ)))
∨(¬a ∧ (♢⟨a ⟳ ψ⟩φ ∨ (ψ∧ ↓c.@a♢c ∧ @a⟨a ⟳ ψ⟩φ)))

(h) [◦ψ]φ↔↓c.⟨c ◦ ψ⟩φ

In (L2), ◦ ranges among {+,−,⟳} and c is always new to the other formulas.
Validity of (L2,d) and (L2,h) is can be easily verified. Similar to Theorem 1, the
readers can verify that all axioms in (L2) are valid. As in Section 4, for each
X ⊆ {+,−,⟳}, let Ll(X), Ln(X), LLV(X) and CLLV(X) be the X-fragment of
Ll, Ln, LLV and CLLV, respectively. Specially, we have LLV(∅) = H(↓,E).

Proposition 3. Let X ⊆ {+,−,⟳}. Then

(1) For all φ ∈ Ll(X), there is φ′ ∈ Ln(X) such that |= φ↔ φ∗.
(2) For all φ ∈ Ln(X), there is φ′ ∈ Ll(∅) such that |= φ↔ φ′.

Proof. For (1), we define a translation (·)∗ from Ll(X) to Ln as follows:

x∗ = x for all x ∈ Prop ∪ Nom

(◦φ)∗ = ◦φ∗ for all ◦ ∈ {¬,♢,E, ↓a.}
([◦ψ]φ)∗ =↓a.⟨a ◦ ψ⟩φ∗ for all ◦ ∈ {+,−,⟳}, where a is new

It is easy to verify that |= φ ↔ φ∗ and φ∗ ∈ Ln. By axioms in (L2), (2) can be
proved by induction on complexity of φ.

As a conclusion, for each X ⊆ {+,−,⟳}, we have

Theorem 4. CLLV(X) is sound and strongly complete w.r.t. LLV(X).

Remark 1. The readers may notice that the expressive power of hybrid logic
with downarrow and universal existential operator is as strong as the one of
first-order logic, which makes the results in this section less surprising. However,
for fragments without the operator ⟨+⟩, we can work with the hybrid language
L(@, ↓) instead of L(E, ↓), which leads to stronger results. For example, a sound
and complete axiomatization for LLD(@, ↓) is obtained immediately.

6 Conclusion

Summary. Axiomatization of logic of global and local definable link variations
are investigated in this work. For global link variations, the logic GLV based on
hybrid logic H(@) is introduced and a Hilbert-style calculus CGLV is provided.
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The calculus CGLV is shown to be sound and strongly complete with respect to
GLV by constructing a family of canonical models inductively. For local definable
link variations, the logic LLV is introduced. By defining local named dynamic op-
erators and provide recursion axioms, we provide a sound and strongly complete
calculus CLLV for LLV. For an arbitrarily chosen dynamic fragment X, we pro-
vide a sound and complete axiomatization for the logic LLV(X). As a corollary,
LLD(@, ↓) is axiomatized and a open problem raised in [12] is solved.

Related work. This work is inspired by [8], in which axiomatization for hybrid
sabotage logic is provided. The method of completeness proof in this work is a
generalization of the one used in [8], and it can be applied to hybrid dynamic
logics of other kinds link variations. From the view of graph theory, link vari-
ations are special kinds of graph variations and there are many other graph
variations, for example, point deletion and point adding. Public announcement
logic is one of the logics dealing with point deletion, which was raised in [18].
Local and global public announcement operators have been studied (cf.[4]). Fur-
thermore, the logic of stepwise point deletion is studied in [5], which helps us
to understand how the complexity jumps between dynamic epistemic logics of
model transformations and logics of randomly chosen graph changes recorded in
current memory. Finally, link variation is widely studied in applied logics, for
example, social network logics. Nodes in a graph can be viewed as agents, and
links can represent the "follow" relation in Twitter or the "friendship" relation
in Facebook (cf. [16, 17]). Having better understanding of link variations can
improve the researches in social network logics.

Further Directions. Decidability problem: The logics GLV(−) and LLV(−) have
been proved to be undecidable (cf. [2, 12]). Since GLV and LLV extend these logics
repectively, they are also undecidable. An immediate technical open problem is
to find decidable fragments for these logics.

Different kind of link variations: In this work, we discuss the dynamic oper-
ators link cutting, adding and rotating, which are starting point of the study of
more general link variations. What kind of link variation can be axiomatized by
the method given in this work? What if there is no hybrid operators? These are
all possible directions. In fact, we consider in this work only global undefinable
and local definable link variations. Properties of global definable link variations
and local undefinable link variations are worth studying.

Applications of logics of link variations: Back to the knowledge graphs, with
logics GLV and LLV, we get a better understanding of reasoning in knowledge
graphs. Furthermore, in the area of epistemic logic, we could add link variation
operators to social network logics and dynamic epistemic logic to make these
logics more powerful for reasoning about dynamic situations.
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Appendix: Proof of Lemma 3

Proof. Clearly, f is bijective and f(V σ(x)) = V σ
′
(x) for each x ∈ Prop ∪ Nom.

Let u, v ∈WΓ and σ′ = σ∗⟨a ◦ b⟩. Then it suffices to show ⟨uσ, vσ⟩ ∈ Rσ|⟨a◦b⟩ iff
Rσ

′
uσ

′
vσ

′
. One should note that i ∈ wσ iff ī = wσ for all i ∈ Nom and w ∈WΓ .
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(1) ◦ = +. Then

⟨uσ, vσ⟩ ̸∈ Rσ|⟨ā+b̄⟩ iff ⟨uσ, vσ⟩ ̸∈ Rσ and ⟨uσ, vσ⟩ ≠ ⟨ā, b̄⟩
iff ⟨uσ, vσ⟩ ̸∈ Rσ and ⟨a, b⟩ ̸∈ w × v

iff ⟨uσ′
, vσ

′⟩ ̸∈ Rσ
′

(2) ◦ = −. Then

⟨uσ, vσ⟩ ∈ Rσ|⟨ā−b̄⟩ iff ⟨uσ, vσ⟩ ∈ Rσ and ⟨uσ, vσ⟩ ≠ ⟨ā, b̄⟩
iff ⟨uσ, vσ⟩ ∈ Rσ and ⟨a, b⟩ ̸∈ w × v

iff ⟨uσ′
, vσ

′⟩ ∈ Rσ
′

(3) ◦ =⟳. Then we have

⟨uσ, vσ⟩ ∈ Rσ|⟨ā⟳b̄⟩ iff (3.1) Rσuσvσ and ⟨ā, b̄⟩ ≠ ⟨uσ, vσ⟩, or
(3.2) Rσvσuσ and ⟨ā, b̄⟩ = ⟨vσ, uσ⟩ (Proposition 1)

iff (3.1’) Rσuσvσ and ⟨a, b⟩ ̸∈ uσ × vσ, or
(3.2’) Rσvσuσ and ⟨a, b⟩ ∈ vσ × uσ

iff ⟨uσ′
, vσ

′⟩ ∈ Rσ
′

Appendix: Proof of Lemma 4

Proof. The proof of (1) proceeds by induction on the length n of σ. Let i, j ∈ Nom
be nominals with i ∈ w and j ∈ v. Suppose n = 0. Then φ ∈ v and RΓwv. Thus
@i♢j ∧ @jφ ∈ Γ , which entails @i♢φ ∈ Γ and so ♢φ ∈ w. Suppose n > 0. Then
we have three cases:

(1.1) σ = σ′ ∗ ⟨a+ b⟩. Since Rσwσvσ, either Rσ
′
wσ

′
vσ

′
or ⟨a, b⟩ ∈ w × v.

Suppose Rσ
′
wσ

′
vσ

′
. Since φ ∈ vσ, we see ⟨a+ b⟩φ ∈ vσ

′
. By IH2, ♢⟨a+ b⟩φ ∈

wσ
′
. By axiom (G3,e), ⟨a+ b⟩♢φ ∈ wσ

′
. Thus ♢φ ∈ wσ. Suppose ⟨a, b⟩ ∈ w× v.

Since φ ∈ vσ, we see σφ ∈ v and so @bσφ ∈ w. By axiom (G3,d), @b⟨a+ b⟩φ ∈
wσ

′
. Note that a ∈ wσ

′
, by axiom (G3,e), ⟨a+ b⟩♢φ ∈ wσ

′
and so ♢φ ∈ wσ.

(1.2) σ = σ′ ∗ ⟨a− b⟩. Since Rσwσvσ, we see Rσ
′
wσ

′
vσ

′
and ⟨a, b⟩ ̸∈ w × v.

Suppose a ̸∈ w. Since φ ∈ vσ, we see ⟨a− b⟩φ ∈ vσ
′
. By IH, ♢⟨a− b⟩φ ∈ wσ

′
.

Then ¬a ∧ ♢⟨a− b⟩φ ∈ wσ
′
. By (G3,f), ⟨a− b⟩♢φ ∈ wσ

′
and so ♢φ ∈ wσ.

Suppose b ̸∈ vσ
′
. Since φ ∈ vσ, ¬b∧⟨a− b⟩φ ∈ vσ

′
. By IH, ♢(¬b∧⟨a− b⟩φ) ∈ wσ

′
.

By axiom (G3,f), ⟨a− b⟩♢φ ∈ wσ
′
. Thus ♢φ ∈ wσ.

(1.3) σ = σ′ ∗ ⟨a ⟳ b⟩. Since Rσwσvσ, one of the following cases holds:
(1.3.1) Rσ

′
wσ

′
vσ

′
and ⟨a, b⟩ ̸∈ w × v. Suppose b ̸∈ v. Since φ ∈ vσ, we see

¬b ∧ ⟨a ⟳ b⟩φ ∈ vσ
′
. By IH, ♢(¬b ∧ ⟨a ⟳ b⟩φ) ∈ wσ

′
. By axiom (G3,c) and

(G3,h), we have ⟨a ⟳ b⟩♢φ ∈ wσ
′
and so ♢φ ∈ wσ. Suppose b ∈ v. Then a ̸∈ w.

Note that ⟨a ⟳ b⟩φ ∈ vσ
′
, by IH, ♢⟨a ⟳ b⟩φ ∈ wσ

′
. Since a ̸∈ wσ

′
, we see either

¬(a ∨ b) ∧ ♢⟨a ⟳ b⟩φ ∈ wσ
′

or b ∧ ♢⟨a ⟳ b⟩φ ∈ wσ
′
. In both of these cases, one

can verify that ⟨a ⟳ b⟩♢φ ∈ wσ
′
, which entails ♢φ ∈ wσ.

(1.3.2) Rσ
′
vσ

′
wσ

′
and ⟨b, a⟩ ∈ w× v. Suppose a ∈ w. Then wσ

′
= vσ

′
, which

entails Rσ
′
vσ

′
wσ

′
and @ab ∈ wσ

′
. Since ⟨a ⟳ b⟩φ ∈ vσ

′
, by IH, ♢⟨a ⟳ b⟩φ ∈ wσ

′
.

2 we write IH for indcution hypothesis
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By axiom (G3,h), we have ⟨a ⟳ b⟩♢φ ∈ wσ
′
and so ♢φ ∈ wσ. Suppose a ̸∈ w. If

Rσ
′
wσ

′
vσ

′
holds, then we see ♢φ ∈ wσ by (3.1). Suppose vσ

′ ̸∈ Rσ
′
(wσ

′
). Then

clearly, ¬γ⟳a,b ∈ wσ
′
. Note that a∧ ⟨a ⟳ b⟩φ ∈ vσ

′
, by (G3,h), we have ♢φ ∈ wσ.

The proof of (2) also proceeds by induction on the length n of σ. Suppose n = 0.
Since ♢φ ∈ w, we see @i♢φ ∈ Γ for some i ∈ w. Since Γ is pasted, there exists
a nominal j such that @i♢j ∧ @jφ ∈ Γ . Let v = ∆j . Then we see RΓwv and
φ ∈ v. Suppose n > 0. Then we have three cases:

(2.1) σ = σ′ ∗ ⟨a+ b⟩. Since ♢φ ∈ wσ, ⟨a+ b⟩♢φ ∈ wσ
′
. By axiom (G3,e),

(a∧@b⟨a+ b⟩φ)∨♢⟨a+ b⟩φ ∈ wσ
′
. Suppose a∧@b⟨a+ b⟩φ ∈ wσ

′
. Then a ∈ wσ

′

and @b⟨a+ b⟩φ ∈ wσ
′
. Let v = ∆b. Then ⟨a+ b⟩φ ∈ vσ

′
, which entails φ ∈ vσ.

Note that ⟨a, b⟩ ∈ w × v, we have Rσwσvσ. Suppose ♢⟨a+ b⟩φ ∈ wσ
′
. By IH,

there is v ∈WΓ with Rσ
′
wσ

′
vσ

′
and ⟨a+ b⟩φ ∈ vσ

′
. Then Rσwσvσ and φ ∈ vσ.

(2.2) σ = σ′ ∗ ⟨a− b⟩. Since ♢φ ∈ wσ, we see ⟨a− b⟩♢φ ∈ wσ
′
. By axiom

(G3,f), (a ∧ ♢(¬b ∧ ⟨a− b⟩φ)) ∨ (¬a ∧ ♢⟨a− b⟩φ) ∈ wσ
′
. Suppose a ∧ ♢(¬b ∧

⟨a− b⟩φ) ∈ wσ
′
. Then a ∈ wσ

′
and ♢(¬b ∧ ⟨a− b⟩φ) ∈ wσ

′
. By IH, there

is v ∈ WΓ such that Rσ
′
wσ

′
vσ

′
and ¬b ∧ ⟨a− b⟩φ ∈ vσ

′
. Then b ̸∈ v and

⟨a− b⟩φ ∈ vσ
′
, which entails Rσwσvσ and φ ∈ vσ. Suppose ¬a∧♢⟨a− b⟩φ ∈ wσ

′
.

Then a ̸∈ wσ
′
and ♢⟨a− b⟩φ ∈ wσ

′
. By IH, there is v ∈WΓ with Rσ

′
wσ

′
vσ

′
and

⟨a− b⟩φ ∈ vσ
′
. Then φ ∈ vσ. Since a ̸∈ w, Rσwσvσ.

(2.3) σ = σ′ ∗ ⟨a ⟳ b⟩. Since ♢φ ∈ wσ, ⟨a ⟳ b⟩♢φ ∈ wσ
′
. By axiom (G3,g),

(γ⟳a,b∧♢⟨a ⟳ b⟩φ)∨ (¬γ⟳a,b∧ψ) ∈ wσ
′
, where ψ⟳

a,b = (a∧♢(¬b∧⟨a ⟳ b⟩φ))∨ (b∧
(♢⟨a ⟳ b⟩φ ∨ @a⟨a ⟳ b⟩φ)). Then there are two cases:

(2.3.1) γ⟳a,b∧♢⟨a ⟳ b⟩φ ∈ wσ
′
. Then ♢⟨a ⟳ b⟩φ ∈ wσ

′
. By IH, there is v ∈WΓ

such that Rσ
′
wσ

′
vσ

′
and ⟨a ⟳ b⟩φ ∈ vσ

′
. Then φ ∈ vσ. If ⟨a, b⟩ ̸∈ w× v, then we

obtain Rσwσvσ immediately. Suppose ⟨a, b⟩ ∈ w × v. Since γ⟳a,b ∈ wσ
′
, we have

@a(¬♢b ∨ b) ∈ wσ
′

and so ¬♢b ∨ b ∈ wσ
′
. Since b ∈ vσ

′
and Rσ

′
wσ

′
vσ

′
, by (1),

♢b ∈ wσ
′
. Then b ∈ wσ

′
and so w = v. Since ⟨a, b⟩ ∈ w × v, Rσwσvσ.

(2.3.2) ¬γ⟳a,b ∧ ψ⟳
a,b ∈ wσ

′
. Then clearly, exactly one of a ∈ wσ

′
and b ∈ wσ

′

holds. Suppose a ∈ wσ
′
. Then ♢(¬b ∧ ⟨a ⟳ b⟩φ) ∈ wσ

′
. By IH, there is v ∈ WΓ

with Rσ
′
wσ

′
vσ

′
and ¬b∧⟨a ⟳ b⟩φ ∈ vσ

′
. Then φ ∈ vσ. Note that b ̸∈ v, Rσwσvσ.

Suppose b ∈ wσ
′
. Then ♢⟨a ⟳ b⟩φ∨@a⟨a ⟳ b⟩φ ∈ wσ

′
. Assume ♢⟨a ⟳ b⟩φ ∈ wσ

′
.

By IH, there is v ∈ WΓ such that Rσ
′
wσ

′
vσ

′
and ⟨a ⟳ b⟩φ ∈ vσ

′
. Then φ ∈ vσ.

Note that a ̸∈ w, we have Rσwσvσ. Assume @a⟨a ⟳ b⟩φ ∈ wσ
′
. Then ⟨a ⟳ b⟩φ ∈

(∆a)σ
′
and so φ ∈ (∆a)σ. Since ⟨b, a⟩ ∈ w ×∆a, we have Rσwσ(∆a)σ.
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Abstract. The logic of the hide and seek game LHS was proposed to
reason about search missions and interactions between agents in pursuit-
evasion environments. As proved in [15, 16], having an equality constant
in the language of LHS drastically increases its computational complex-
ity: the satisfiability problem for LHS with multiple relations is undecid-
able. In this work, we improve the existing proof for the undecidability
by showing that LHS with a single relation is undecidable. With the find-
ings of [15, 16], we provide a van Benthem style characterization theorem
for the expressive power of the logic. Finally, by ‘splitting’ the language
of LHS−, a crucial fragment of LHS without the equality constant, into
two ‘isolated parts’, we provide a complete Hilbert style proof system for
LHS− and prove that its satisfiability problem is decidable, whose proofs
would indicate significant differences between the proposals of LHS− and
of ordinary product logics. Although LHS and LHS− are frameworks for
interactions of 2 agents, all results in the article can be easily transferred
to their generalizations for settings with any n > 2 agents.

Keywords: Logic of the hide and seek game · Axiomatization · Modal logic ·
Expressive power · Decidability

1 Introduction

The logic LHS of the hide and seek game was introduced in [2] that promotes
a study of graph game design in tandem with matching modal logics, and then
was probed in [15] and its further extension [16]. The logic provides us with a
platform to reason about search problems and interactions between agents with
entangled goals, as in the case of the hide and seek game [2] (or the game of
cops and robber [17]): in a fixed graph, two players Hider and Seeker take turns
to move to a successor of their own positions, and Seeker tries to move to the
same position with Hider while Hider aims to avoid Seeker.

To describe the game, the language of LHS contains two modalities for the
movements of the two players and a constant I expressing that the positions of
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Hider and Seeker are the same. Semantically, models for LHS are the same as
relational models for basic modal logic [4], while formulas are evaluated at two
states, which intuitively represent the positions of the two players.

In addition to the applications to the graph games, LHS is also of interest
from other perspectives. One of them is that the framework links up the study
of graph game logics with many other important fields: as illustrated in [15,
16], LHS and its fragment LHS− without the constant I have close connection
with product logics, including K× K [8] and its extension K×δ K with a diagonal
constant δ [9, 11, 12]; the framework LHS is highly relevant to cylindric modal
logics that also contain constants for equality [21]; and both K×δ K and cylindric
modal logics in turn provide a link between LHS and cylindric algebra proposed
in [10]. Moreover, the framework LHS provides an instance showing how an inno-
cent looking proposal I for equality can drastically increase the computational
complexity of the logic: as proved in [15, 16], the satisfiability problem for LHS
with multiple binary relations is undecidable.

In this work, we will explore the further properties of LHS and LHS−. First,
we improve the existing undecidability proof for LHS with multiple relations and
show that LHS with a single relation is undecidable (Section 3). Then, based on
the notions of first-order translation and bisimulations for LHS given in [16], we
develop a van Benthem style characterization theorem for the expressiveness of
LHS (Section 4). Next, for LHS−, we develop a complete Hilbert style calculus
and show that its satisfiability problem is decidable (Section 5), and our proofs
would indicate important differences between the proposals of LHS− and K× K.
Also, we discuss related work and point out a few lines of further study (Section
6). It is instructive to notice that although LHS and LHS− are frameworks for
the hide and seek game with 2 players, all these results can be transferred to
the logics generalizing LHS and LHS− for the settings with n > 2 players, but
we stick to discussing the systems LHS and LHS− for simplicity.

2 Basics of the Logic of the Hide and Seek Game

We start by concisely introducing the basics of LHS, including its language and
semantics, and providing preliminary observations on its properties.

Definition 1. Let L = {pli : i ∈ N} and R = {pri : i ∈ N} be two disjoint count-
able sets of propositional variables. The language L of LHS is given by:

L ∋ φ ::= pl | pr | I | ¬φ | φ ∧ φ | □φ | ■φ,

where pl ∈ L and pr ∈ R.

Abbreviations ⊤,⊥,∨,→ are as usual, and we use ♢,♦ for the dual operators
of □ and ■ respectively. For convenience, we call □ and ♢ ‘white modalities’ and
call ■ and ♦ ‘black modalities’. Also, the notion of subformulas is as usual, and
for any φ ∈ L, we employ Sub(φ) for the set of subformulas of φ. In what follows,
we use L− for the part of L without I, which is the language for LHS−.
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A frame is a tuple F = (W,R) such that W is a non-empty set of states and
R ⊆W ×W is a binary relation on W . A model M = (W,R, V ) equips a frame
with a valuation function V : L∪R → P(W ).4 For any s, t ∈W , we call ⟨M, s, t⟩
a pointed LHS-model. For simplicity, we usually write M, s, t for it. For each
w ∈W and U ⊆W , we define R(w) = {v ∈W : Rwv} and R(U) =

⋃
u∈U R(u).

Definition 2. Let M = (W,R, V ) be a model and s, t ∈ W . Truth of formulas
φ ∈ L at ⟨M, s, t⟩, written as M, s, t |= φ, is defined recursively as follows:

M, s, t |= pl ⇔ s ∈ V (pl)
M, s, t |= pr ⇔ t ∈ V (pr)
M, s, t |= I ⇔ s = t

M, s, t |= ¬φ ⇔ M, s, t ̸|= φ
M, s, t |= φ ∧ ψ ⇔ M, s, t |= φ and M, s, t |= ψ

M, s, t |= □φ ⇔ M, s′, t |= φ for all s′ ∈ R(s)
M, s, t |= ■φ ⇔ M, s, t′ |= φ for all t′ ∈ R(t)

Notions of satisfiability, validity and logical consequence are defined in the
usual manner. Let LHS denote the set of all valid formulas.

Remark 1. With the semantic clause for I, we can see that it is essentially a
proposal to capture equality. Similarly, @-operators in ordinary hybrid logics
are also proposals for equality (see e.g., [4, Chapter 7.3]). For discussion on
differences between these two approaches, see [19]. Also, in LHS, □φ and ■φ
move along a common relation R, but it is also interesting to consider the case
that models contain two different relations, one for each player, which means that
Hider and Seeker can make different moves. We believe that the results developed
in the article can be transferred to this variant by adapting our proofs.

Let M = (W,R, V ) be a model and U ⊆W . We say a model M′ = (W ′, R′, V ′)
is generated from M = (W,R, V ) by U , if M′ is the smallest model satisfying the
following: U ⊆ W ′, R(W ′) ⊆ W ′, R′ = R ∩ (W ′ ×W ′), and for each p ∈ L ∪ R,
V ′(p) = V (p) ∩W ′.

Proposition 1. Let M′ = (W ′, R′, V ′) be a submodel of M = (W,R, V ) gener-
ated by {s, t} ⊆W . For any formula φ ∈ L, M, s, t |= φ iff M′, s, t |= φ.

Proof. It goes by induction on formulas. We omit the details to save space. ⊓⊔

3 Undecidability of LHS

As stated, [15, 16] proved that the satisfiability problem for LHS with multiple
binary relations is undecidable. In this part, we show that LHS with a single
relation is undecidable as well, which is an improvement of the existing proof.

Theorem 1. The satisfiability problem for LHS is undecidable.

4 For any set A, we use P(A) for its power set.
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We show this by reduction of the N×N tiling problem [18] to the satisfiability
problem for LHS. Let T = {T1, . . . , Tn} be some fixed set of tile types. For each
Ti ∈ T, we use up(Ti), down(Ti), left(Ti) and right(Ti) to represent the colors
of its up, down, left and right edges, respectively. We say that T tiles N × N if
there is a function g : N× N → T such that for all n,m ∈ N,

right(g(n,m)) = left(g(n+ 1,m)) and up(g(n,m)) = down(g(n,m+ 1)).

Functions satisfying the conditions above are called tiling functions. In what
follows, to show that LHS is undecidable, we present a formula φT such that

φT is satisfiable if and only if T tiles N× N.

Let Label = {u, r}∪{ti : 1 ≤ i ≤ n} be a set of labels. Let NVL = {pl : p ∈ Label}
and NVR = {pr : p ∈ Label} be sets of new variables. For convenience, we denote∨

1≤i≤n t
l
i by tl and

∨
1≤i≤n t

r
i by tr. We write ♢uφ for tl ∧♢(ul ∧♢(tl ∧φ)) and

♢rφ for tl ∧ ♢(rl ∧ ♢(tl ∧ φ)). Operators ♦u and ♦r are defined similarly. The
dual of these operators are defined as usual, for example, □uφ := ¬♢u¬φ.

The formula φT is the conjunction of those in the groups below. To facilitate
discussion, let M = (W,R, V ) be a model and w, v ∈W s.t. M, w, v |= φT.

Group 1 (Basic requirements):

(SP) I ∧□□♦I ∧ ♢tl
(VL1) □■(I → ∧

p∈Label(p
l ↔ pr))

(VL2) □
∧
p∈Label(p

l ↔ ∧
p̸=q∈Label ¬ql)

Let us explain the meanings of the formulas in Group 1. Intuitively, we can treat
t, u, r as labels. The formula (SP) says that w = v, R(R(w)) ⊆ R(w) and there
is some v ∈ R(w) which is labelled by t. (VL1) indicates that for any s ∈ R(w),
its ‘left-label’ and ‘right-label’ are always the same. Moreover, (VL2) shows that
every point s ∈ R(w) has exactly one label.

Group 2 (Grid requirements):

(TU1) □■(tl ∧ I → ♢(ul ∧■(ur → I)))
(TU2) □■(ul ∧ I → ♢(tl ∧■(tr → I)))
(TR1) □■(tl ∧ I → ♢(rl ∧■(rr → I)))
(TR2) □■(rl ∧ I → ♢(tl ∧■(tr → I)))
(URT) □■(tl ∧ I → □u■r♢r♦uI)

We can assume that M is a model generated by w ∈W (Proposition 1). Let

Ru = {⟨s, t⟩ ∈ R : M, s, t |= tl ∧ tr and for some x ∈ V (ul), sRx and xRt}.

It follows from (TU1) and (TU2) that for all s ∈ R(w), |Ru(s)| = 1.5 Similarly,
we can define Rr, and by (TR1) and (TR2), for all s ∈ R(w), |Rr(s)| = 1. From
(URT), we can infer that for all v ∈ R(w), Rr(Ru(v)) = Ru(Rr(v)).

Group 3 (Tiling the model):

5 For any set A, we use |A| for its cardinality.
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(T1) □(tl → ∧n
i=1(tli → ♢u

∨
1≤j≤n & up(Ti)=down(Tj)

tlj));

(T2) □(tl → ∧n
i=1(tli → ♢r

∨
1≤j≤n & right(Ti)=left(Tj)

tlj)).

The formulas in Group 3 are standard, which tell us that T ‘tiles’ R(w)∩ V (tl).

Lemma 1. If T tiles N× N, then φT is satisfiable.

Proof. Let h : N×N → T be a tiling function. Define Mh = (W,R, V ) as follows:

• W = W0 ∪ {s}, where W0 = {⟨n,m⟩ ∈ N× N : n×m is even}
• R = Rr ∪Ru ∪ ({s} ×W0), where

• Rr = {⟨⟨k, 2l⟩, ⟨k + 1, 2l⟩⟩ : k, l ∈ N}
• Ru = {⟨⟨2k, l⟩, ⟨2k, l + 1⟩⟩ : k, l ∈ N}

• V is a valuation such that
• V (rl) = V (rr) = {⟨2k + 1, 2l⟩ ∈W : k, l ∈ N}
• V (ul) = V (ur) = {⟨2k, 2l + 1⟩ ∈W : k, l ∈ N}
• V (tli) = V (tri ) = {⟨2k, 2l⟩ ∈W : k, l ∈ N, h(k, l) = Ti} for all 1 ≤ i ≤ n.
• V (pl) = V (qr) = ∅ for all other pl, qr ∈ L ∪ R.

The model Mh is shown in Fig 1. It is easy to verify that Mh, s, s |= φT. ⊓⊔

s ⟨0, 0⟩ ⟨1, 0⟩ ⟨2, 0⟩ ⟨3, 0⟩ ⟨4, 0⟩
. . .

. . .

. . .

. . .

. . .

⟨0, 1⟩

⟨0, 2⟩

⟨0, 3⟩

⟨0, 4⟩

...
...

...
...

...

t r t r t

u u u

t r t r t

u u u

t r t r t

Fig. 1. The model Mh: Both dotted arrows and solid arrows represent the relation R.

Lemma 2. If φT is satisfiable, then T tiles N× N.

Proof. Suppose M = (W,R, V ) is a model generated by s ∈W and M, s, s |= φT
(Proposition 1). It suffices to define a tiling function g : N× N → T . By (SP1),
V (tl) ̸= ∅. Also, it follows from (TU1) and (TU2) that for each w ∈ V (tl), there
is exactly one state v ∈ V (tl) such that wRxRv for some x ∈ V (ul), and we
denote the state v by up(w). Then up : V (tl) → V (tl) is a function. Similarly,
due to (TR1) and (TR2), we can define a function right : V (tl) → V (tl). Let
w0 ∈ V (tl). We inductively define a function g : N× N → V (tl) as follows:
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g(⟨0, 0⟩) = w0, g(⟨n,m+ 1⟩) = up(g(⟨n,m⟩)), g(⟨n+ 1,m⟩) = right(g(⟨n,m⟩)).

Now from (URT) we can infer that for each w ∈ V (tl), up(right(w)) = right(up(w)).
Then, for all ⟨n,m⟩ ∈ N× N,

up(g(⟨n+ 1,m⟩)) = up(right(g(⟨n,m⟩))) = right(up(g(⟨n,m⟩))) = right(g(⟨n,m+ 1⟩)).

Hence function g is well-defined. Let h : V (tl) → T be the function such that for
each 1 ≤ i ≤ n, h(w) = Ti if and only if w ∈ V (tli). Finally, by the formulas in
Group 3, it is clear that h ◦ g : N× N → T is a tiling function. ⊓⊔

4 van Benthem Characterization Theorem

This section is devoted to the expressive power of LHS. Precisely, based on the
notions of its first-order translation and bisimulations developed in [15, 16], we
will provide a van Benthem style characterization theorem for the logic.

Let L1 be the first-order language consisting of the following: a countable set
P = {P li , P ri : i ∈ N} of unary predicates, a binary relation R and equality ≡.
For any two variables x and y, the first-order translation T⟨x,y⟩ : L → L1 for
LHS is given recursively as follows:

T⟨x,y⟩(pli) := P lix T⟨x,y⟩(pri ) := P ri y T⟨x,y⟩(I) := (x ≡ y)

T⟨x,y⟩(¬φ) := ¬T⟨x,y⟩(φ) T⟨x,y⟩(φ ∧ ψ) := T⟨x,y⟩(φ) ∧ T⟨x,y⟩(ψ)

T⟨x,y⟩(□φ) := ∀z(Rxz → T⟨z,y⟩(φ)) T⟨x,y⟩(■φ) := ∀z(Ryz → T⟨x,z⟩(φ))

For any set Φ ⊆ L of formulas, we define T⟨x,y⟩(Φ) := {T⟨x,y⟩(φ) : φ ∈ Φ}.
Now, the following result indicates the correctness of the translation:

Proposition 2 ([16]). For any pointed LHS-model ⟨M, s, t⟩ and φ ∈ L,

M, s, t |= φ if and only if M |= T⟨x,y⟩(φ)[s, t].6

Let us recall the notions of LHS-bisimulation and LHS-saturation in [16]:

Definition 3 ([15, 16]). Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be models.
A binary relation Z ⊆ (W × W ) × (W ′ × W ′) is called an LHS-bisimulation
between M and M′, notation Z : M ↔ M′, if the following conditions hold for
all s, t, v ∈W and s′, t′, v′ ∈W ′:

• If ⟨s, t⟩Z⟨s′, t′⟩, then for all p ∈ L∪R, M, s, t |= p if and only if M′, s′, t′ |= p.
• If ⟨s, t⟩Z⟨s′, t′⟩ and v ∈ R(s), then there is v′ ∈ R′(s′) s.t. ⟨v, t⟩Z⟨v′, t′⟩.
• If ⟨s, t⟩Z⟨s′, t′⟩ and v ∈ R(t), then there is v′ ∈ R′(t′) s.t. ⟨s, v⟩Z⟨s′, v′⟩.
• If ⟨s, t⟩Z⟨s′, t′⟩ and v′ ∈ R′(s′), then there is v ∈ R(s) s.t. ⟨v, t⟩Z⟨v′, t′⟩.
• If ⟨s, t⟩Z⟨s′, t′⟩ and v′ ∈ R′(t′), then there is v ∈ R(t) s.t. ⟨s, v⟩Z⟨s′, v′⟩.
• If ⟨s, t⟩Z⟨s′, t′⟩, then s = t if and only if s′ = t′.

6 By M |= T⟨x,y⟩(φ)[s, t], we mean that when values of x, y in T⟨x,y⟩(φ) are s, t re-
spectively, T⟨x,y⟩(φ) is satisfied by M.
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If there is an LHS-bisimulation Z : M ↔ M′ s.t. ⟨s, t⟩Z⟨s′, t′⟩, then we say that
⟨M, s, t⟩ is LHS-bisimular to ⟨M′, s′, t′⟩ and write ⟨M, s, t⟩ ↔ ⟨M′, s′, t′⟩.

Definition 4 ([15, 16]). Let M = (W,R, V ) be a model. A set ∆ of formulas
is said to be satisfiable in X ⊆W ×W if M, s, t |= ∆ for some ⟨s, t⟩ ∈ X. Then
M is said to be LHS-saturated if for all Φ ⊆ L and w, v ∈W :

1. If every finite subset Σ of Φ is satisfiable in R(w)×{v}, then Φ is satisfiable
in R(w) × {v}.

2. If every finite subset Σ of Φ is satisfiable in {w}×R(v), then Φ is satisfiable
in {w} ×R(v).

Proposition 3 ([15, 16]). If ⟨M, s, t⟩ ↔ ⟨M′, s′, t′⟩, then ⟨M, s, t⟩ and ⟨M′, s′, t′⟩
satisfy the same LHS-formulas.

Proposition 3 indicates that LHS-bisimulation given above is what we desired.
The converse of Proposition 3 holds for LHS-saturated models:

Proposition 4 ([15, 16]). For all M and M′ that are LHS-saturated, if ⟨M, s, t⟩
and ⟨M′, s′, t′⟩ satisfy the same formulas of LHS, then ⟨M, s, t⟩ ↔ ⟨M′, s′, t′⟩.

Let Γ (x1, . . . , xn) ⊆ L1. We say that M = (W,R, V ) realizes Γ if there are
a1, . . . , an ∈ W s.t. M |= γ[a1, . . . , an] for all γ ∈ Γ . Also, let A ⊆ W . For each
a ∈ A, let ca be a constant symbol. Let L1

A = L1 ∪ {ca : a ∈ A} and let MA

denote the L1
A-expansion M such that for all a ∈ A, a has the value ca.

Definition 5. A model M = (W,R, V ) is ω-saturated, if for all A ⊆ W , MA

realizes every Γ (x) ⊆ L1
A whose finite subsets are all realized in MA.

Proposition 5. All ω-saturated models M = (W,R, V ) are LHS-saturated.

Proof. Let Σ ⊆ L be finitely satisfiable in R(w) × {v} and w, v ∈ W . Then
let ∆(x) = {Rcwx} ∪ {T⟨x,y⟩(φ)[y/cv] : φ ∈ Σ}. Every finite subset of ∆(x) is
realized by some u ∈ R(w) in M{w,v} (Proposition 2). Since M is ω-saturated,
∆(x) is realized in M{w,v}. So, there is some u ∈W such that M{w,v} |= ∆(x)[u].
Thus u ∈ R(w) and ⟨M, u, v⟩ |= Σ. Similarly, if Σ is finitely satisfiable in
{w} ×R(v), then Σ is satisfiable in {w} ×R(v). ⊓⊔

Corollary 1. Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be ω-saturated models,
s, t ∈W and s′, t′ ∈W ′. If ⟨M, s, t⟩ and ⟨M′, s′, t′⟩ satisfy the same L-formulas,
then ⟨M, s, t⟩ ↔ ⟨M′, s′, t′⟩.

Let M be a model, I a countable set and U an incomplete ultrafilter over I.
Then we write

∏
U M for the ultrapower of M modulo U .7

Proposition 6. Let M = (W,R, V ) be a model, I a countable set and U an
incomplete ultrafilter over I. For each w ∈W , let fw = I× {w}. Then,
7 For the definitions of ultrafilter and ultrapower of models, see [4, pp.491-493, Defini-
tion A.12 and Definition A.18].
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1.
∏
U M is ω-saturated.

2. For any α(x, y) ∈ L1 and s, t ∈W , M |= α[s, t] iff
∏
U M |= α[(fs)U , (ft)U ].

3. For any L-formula φ and s, t ∈W , M, s, t |= φ iff
∏
U M, (fs)U , (ft)U |= φ.

Proof. The first item follows from [5, p.384, Theorem 6.1.1]. The second follows
from [5, p.217, Theorem 4.1.9]. The last one follows from the second item and
Proposition 2 immediately. ⊓⊔

We say that an L1-formula α(x, y) is invariant for LHS-bisimulation, if for
all ⟨M, s, t⟩ and ⟨M′, s′, t′⟩ that are LHS-bisimilar, M |= α[s, t] iff M′ |= α[s′, t′].
Now we can provide a van Benthem style characterization theorem for LHS:

Theorem 2. For any α(x, y) ∈ L1, α(x, y) is invariant for LHS-bisimulation if
and only if |= α↔ β for some β(x, y) ∈ T⟨x,y⟩(L).

Proof. The right-to-left direction is easy, which follows straightforward from
Proposition 3. For the other direction, let α(x, y) ∈ L1 be invariant for LHS-
bisimulation. Define modal(α) := {β ∈ T⟨x,y⟩(L) : α |= β}.We show modal(α) |=
α. Let M be a model such that M |= modal(α)[a, b]. It suffices to show that
M |= α[a, b]. Let Φ be a set of formulas defined by

Φ := {β(x, y) ∈ T⟨x,y⟩(L) : M |= β[a, b]} ∪ {α(x, y)}.

We claim that Φ is satisfiable. Suppose Φ is not satisfiable. Then there is a finite
Φ0 ⊆ Φ with Φ0 |= ¬α, which entails α |= ¬∧Φ0 and so M |= ¬∧Φ0[a, b].
Note that

∧
Φ0 ∈ Φ, we see M |= ∧

Φ0[a, b], which is a contradiction. Thus, Φ
is satisfiable and there is a model N and states w, u with N |= Φ[w, u]. Then by
Proposition 2, ⟨M, a, b⟩ and ⟨N, w, u⟩ satisfy the same L-formulas. Let U be an
incomplete ultrafilter over N. Then by Proposition 6(3), ⟨∏U M, (fa)U , (fb)U ⟩
and ⟨∏U N, (fc)U , (fd)U ⟩ satisfy the same L-formulas. By Proposition 6(1) and
Corollary 1, ⟨∏U M, (fa)U , (fb)U ⟩ ↔ ⟨∏U N, (fw)U , (fu)U ⟩. Since N |= α[w, u],
by Proposition 6(2),

∏
U N |= α[(fw)U , (fu)U ]. Since α(x, y) is invariant for

LHS-bisimulation, we have
∏
U M |= α[(fa)U , (fb)U ]. By Proposition 6(2), M |=

α[a, b]. Hence, modal(α) |= α. By the Compactness Theorem, there is a finite
Σ ⊆ modal(φ) such that Σ |= α. Then we see |= α↔ ∧

Σ. ⊓⊔

Finally, it is worthwhile to notice that when we restrict our attention to
LHS−, by adapting the arguments for LHS, we can also obtain a characterization
theorem for the expressiveness of LHS−, but we omit the details to save space.

5 Axiomatization and Decidability of LHS−

In this section, we turn our attention to LHS−. Precisely, we will provide a
proof system for the logic, which is also helpful to show that its satisfiability
problem is decidable. To achieve the former, instead of applying directly the
usual techniques involving canonical models, we will make a detour: very roughly,
we will first separate the ‘black part’ and the ‘white part’ of the language L− of
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LHS− and then build a desired calculus on that for the standard modal logic K.
The details will indicate that containing two kinds of propositional variables in
L− makes LHS− very different from its counterpart K× K in product logic. Let
us now introduce the details.

A formula φ ∈ L− is clean if it contains only black modal operators or white
modal operators. Formulas in the language L− of LHS− may contain nested
black modalities and white modalities. However, as we shall see, every φ ∈ L−

is logically equivalent to a Boolean combination of some clean formulas.

Definition 6. Languages L□ and L■ are given by:

L□ ∋ φ ::= pl | ¬φ | φ ∧ φ | □φ,
L■ ∋ φ ::= pr | ¬φ | φ ∧ φ | ■φ,

where pl ∈ L and pr ∈ R.

Let K□ and K■ denote the minimal modal logics with the languages L□ and
L■, respectively. As the case for the standard modal logic K, the satisfiability
problems for both the logics are decidable (cf. [1]). Also, except the difference of
the languages, their proof systems are the same as that for K [4], and we write
K□ and K■ for them. In what follows, we write |=1 for the usual one-dimensional
satisfaction relation. By induction on formulas, we can show that:

Proposition 7. Let M = (W,R, V ) be a K□-model and N = (U, S, V ′) a K■-
model such that W ∩U = ∅. Let ψ ∈ L□, γ ∈ L■. Then for all s ∈W and t ∈ U ,

(1) M, s |=1 ψ if and only if M ⊎N, s, t |= ψ, and
(2) N, t |=1 γ if and only if M ⊎N, s, t |= γ,

where M⊎N is the LHS-model defined by M⊎N = (W ∪U,R∪S, V ∪ V ′). The
LHS-model M ⊎N is called the disjoint union of M and N.

Let M be a K□-model and N a K■-model. Since there are always isomorphic
copies of them with disjoint domains, we can always assume that the domains
of M and N are disjoint and construct the disjoint union of M and N.

For an arbitrary LHS-model M = (W,R, V ), by restricting the valuation
to L (we write V |L for it), we can obtain a model M|L = (W,R, V |L) for L□,
and similarly, by restricting V to R (we write V |R for it), we can get a model
M|R = (W,R, V |R) for L■. By induction on formulas, it is simple to prove that

Proposition 8. Let ⟨M, s, s⟩ be a pointed LHS-model. Then, for any φ ∈ L□,
M, s, s |= φ iff M|L, s |=1 φ. Also, for any φ ∈ L■, M, s, s |= φ iff M|R, s |=1 φ.

Before the next step, let us first recall some concepts and facts about proposi-
tional logic. Let Lp denote the propositional language whose propositional vari-
ables come from L∪R. For each φ ∈ Lp, we write φ(p1, . . . , pn) if the propositional
variables occurring in φ are among p1, . . . , pn. Let φ(α1, . . . , αn) denote the for-
mula obtained from φ(p1, . . . , pn) by simultaneously substituting p1, . . . , pn with
α1, . . . , αn respectively. Let PL denote the set of all valid formulas in Lp. A sound
and complete Hilbert style calculus PL for PL can be given in a usual way.
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Definition 7. A formula φ ∈ Lp is in conjunctive normal form (CNF), if φ is
of the form

∧n
i=1

∨mi
j=1 φij, where n,m1, . . . ,mn ∈ N+ and each φij is a propo-

sitional variable or a negation of a propositional variable.

We say that a formula φ is a CNF-formula if φ is in conjunctive normal form.
Let CNFp denote the set of all formulas φ ∈ Lp in CNF.

Proposition 9. There is a function h : Lp → CNFp such that for all φ ∈ Lp,
⊢PL φ↔ h(φ).

Proof. Such a function can be found in many textbooks of mathematical logic
(see e.g., [6, p. 221, Theorem 4.7]). ⊓⊔

Definition 8. Let φ ∈ L−. Then we say that φ ∈ L− is a clean formula, if there
are ψ1, . . . , ψn ∈ L□, γ1, . . . , γm ∈ L■ and α(pl1, . . . , p

l
n, p

r
1, . . . , p

r
m) ∈ Lp such

that φ = α(ψ1, . . . , ψn, γ1, . . . , γm). Moreover, if α is in CNF, then φ is called a
clean CNF-formula. Let Lc and CNFc denote the set of all clean formulas and
the set of all clean CNF-formulas, respectively.

Table 1 presents a Hilbert style calculus LHS− for LHS−, which is a direct
extension of the calculi PL, K□ and K■. Therefore, we have the following:

Proof system LHS− for LHS−

Axiom schemes:
(A1) α→ (β → α)
(A2) (α→ (β → θ)) → ((α→ β) → (α→ θ)).
(A3) (¬β → ¬α) → (α→ β).
(K) ⊠(α→ β) → (⊠α→ ⊠β), for ⊠ ∈ {□,■}.
(R□) □(ψ ∨ γ) ↔ (□ψ ∨ γ), where ψ ∈ L□ and γ ∈ L■.
(R■) ■(ψ ∨ γ) ↔ (ψ ∨■γ), where ψ ∈ L□ and γ ∈ L■.
Inference rules:
(MP) From α and α→ β, infer β.
(Nec⊠) From α, infer ⊠α, for ⊠ ∈ {□,■}.

Table 1. A proof system LHS− for LHS−

Proposition 10. For all φ ∈ Lp, if ⊢PL φ, then ⊢LHS− φ.

Proposition 11. For any formula φ of L□, if ⊢K□ φ, then ⊢LHS− φ. Similarly,
for any formula φ of L■, if ⊢K■ φ, then ⊢LHS− φ.

Corollary 2. There is a function f : Lc → CNFc such that for all φ ∈ Lc, it
holds that ⊢LHS− φ ↔ f(φ). Also, the resulting formula f(φ) is of the form∧n
i=1(ψi ∨ γi), where

∧n
i=1 ψi ∈ L□ and

∧n
i=1 γi ∈ L■.

Proof. Let φ be a clean formula. Then, there are formulas β(p1, . . . , pk) ∈ Lp and
α1, . . . , αk ∈ L□∪L■ such that φ = β(α1, . . . , αk). It follows from Proposition 9
that ⊢PL β ↔ h(β). Note that h(β) is in CNF, and so h(β) is of the form∧n
i=1

∨mi
j=1 βij with n,m1, . . . ,mn ∈ N+. For each 1 ≤ i ≤ n, we define:
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• ψi := (pl ∧ ¬pl) ∨∨ {βij ∈ L□ : 1 ≤ j ≤ mi}, and
• γi := (pr ∧ ¬pr) ∨∨ {βij ∈ L■ : 1 ≤ j ≤ mi},

where pl ∈ L and pr ∈ R are new propositional variables. Then it holds that

⊢PL

n∧

i=1

mi∨

j=1

βij ↔
n∧

i=1

(ψi ∨ γi).

By Proposition 10, ⊢LHS− β(p1, . . . , pk) ↔ ∧n
i=1(ψi ∨ γi). Next, applying the

inference rule (Sub) of the calculus LHS−, we can obtain

⊢LHS− φ↔
n∧

i=1

(ψi(α1, . . . , αk, p
l) ∨ γi(α1, . . . , αk, p

r)).

Now, we can define a desired function f : Lc → CNFc in the following manner:

f(φ) =
n∧

i=1

(ψi(α1, . . . , αk, p
l) ∨ γi(α1, . . . , αk, p

r)),

which completes the proof. ⊓⊔

Lemma 3. Let M = (W,R, V ) be a model and s, t ∈W . Then, for all formulas
φ ∈ L□ and ψ ∈ L■, the following equivalences hold:

(1) M, s, t |= φ if, and only if, for all t′ ∈W , M, s, t′ |= φ.
(2) M, s, t |= ψ if, and only if, for all s′ ∈W , M, s′, t |= φ.
(3) M, s, t |= □(φ ∨ ψ) if, and only if, M, s, t |= □φ ∨ ψ.
(4) M, s, t |= ■(φ ∨ ψ) if, and only if, M, s, t |= φ ∨■ψ.

Proof. The proofs for items (1) and (2) are by induction on the complexity of
φ and ψ, respectively. We omit the details for them. In what follows, we merely
consider for (3), since (4) can be proved in a similar way.

For the direction from left to right, we prove the contrapositive and assume
that M, s, t ̸|= □φ∨ψ. Then, M, s, t |= ¬ψ and there is some state s′ ∈ R(s) such
that M, s′, t ̸|= φ. Note that ¬ψ ∈ L■. Now, using the item (2), we can obtain
M, s′, t |= ¬ψ. Thus, it holds that M, s′, t ̸|= φ ∨ ψ, and so M, s, t ̸|= □(φ ∨ ψ).

For the converse direction, we assume that M, s, t ̸|= □(φ ∨ ψ). Then, there
is some state s′ ∈ R(s) s.t. M, s′, t ̸|= φ ∨ ψ, which entails M, s, t ̸|= □φ and
M, s′, t ̸|= ψ. Using item (2), we can infer M, s, t ̸|= ψ from M, s′, t ̸|= ψ. Hence,
M, s, t ̸|= □φ ∨ ψ. The proof is completed. ⊓⊔

From the items (3) and (4) of Lemma 3, it is a matter of direct checking that:

Lemma 4. For all φ ∈ L□ and ψ ∈ L■, both the formulas □(φ∨ψ) ↔ (□φ∨ψ)
and ■(φ ∨ ψ) ↔ (φ ∨■ψ) are valid.

Now we move to showing the soundness of the proof system LHS−:

Theorem 3. For any formula φ ∈ L−, ⊢LHS− φ implies |= φ.
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Proof. The validity of (A1), (A2), (A3), (K□) and (K■) is easy to see. Also,
Lemma 4 indicates that (R□) and (R■) are valid. Moreover, all inference rules
of LHS− preserve validity, and the details are left as an exercise. ⊓⊔

Next, we consider for the completeness of the calculus LHS−.

Definition 9. For any L−-formula φ, we define its clean CNF companion φc
in the following inductive manner:

(pl)c := pl ∨ (pr0 ∧ ¬pr0), where pr0 is a new propositional variable from R.

(pr)c := (pl0 ∧ ¬pl0) ∨ pr, where pl0 is a new propositional variable from L.

(¬φ)c := f(¬φc)

(φ ∧ ψ)c := φc ∧ ψc

(□φ)c :=
n∧

i=1

(□ψi ∨ γi), where
n∧

i=1

ψi ∈ L□,
n∧

i=1

γi ∈ L■ and φc =
n∧

i=1

(ψi ∨ γi).

(■φ)c :=
n∧

i=1

(ψi ∨■γi), where
n∧

i=1

ψi ∈ L□,
n∧

i=1

γi ∈ L■ and φc =
n∧

i=1

(ψi ∨ γi).

Example 1. Let us consider an example ■pl. With the clauses above, we have
(■pl)c = pl ∨■(pr0 ∧ ¬pr0). Note that if we define (pl)c to be pl, then we cannot
ensure that a formula and its clean companion are equivalent: for instance, one
can easily find a model making ■pl ↔ pl false. Similarly for the clause of pr ∈ R.

Theorem 4. Let φ be a formula of L−. Then, its clean CNF companion φc is
of the form

∧n
i=1(ψi ∨ γi) with

∧n
i=1 ψi ∈ L□ and

∧n
i=1 γi ∈ L■. Moreover, it

holds that ⊢LHS− φ↔ φc.

Proof. The first part of the theorem is easy, since φc is a clean CNF formula.
In what follow, by induction on φ ∈ L−, we will show that ⊢LHS− φ↔ φc. The
cases for propositional atoms and ∧ are straightforward, and we consider others.

(1). First, we consider φ = ¬ψ. By the induction hypothesis, it holds that
⊢LHS− ψ ↔ ψc. So, ⊢LHS− ¬ψ ↔ ¬ψc. Clearly, ¬ψc ∈ Lc. From Corollary 2 we
know that ⊢LHS− f(¬ψc) ↔ ¬ψc. Also, with the clause for ¬ in Definition 9, we
have (φ)c = f(¬ψc). Immediately, we obtain ⊢LHS− φc ↔ φ, as desired.

(2). Next, we consider φ = □ψ. Assume that ψc =
∧n
i=1(ψ′

i ∨ γ′i), where∧n
i=1 ψ

′
i ∈ L□ and

∧n
i=1 γ

′
i ∈ L■. Then, ⊢LHS− □ψc ↔ ∧n

i=1□(ψ′
i ∨ γ′i). For

simplicity, we write γ(pl, pr) for □(pl ∨ pr) ↔ (□pl ∨ pr), which is exactly the
axiom (R□). Note that for each 1 ≤ i ≤ n, ψ′

i ∈ L□ and γ′i ∈ L■. So, for each
1 ≤ i ≤ n, using the inference rule (Sub), we can obtain ⊢LHS− γ(ψ′

i, γ
′
i), i.e.,

⊢LHS− □(ψ′
i∨γ′i) ↔ (□ψ′

i∨γ′i). Therefore, ⊢LHS−
∧n
i=1□(ψ′

i∨γ′i) ↔
∧n
i=1(□ψ′

i∨
γ′i), which entails ⊢LHS− □ψc ↔ φc. By induction hypothesis, ⊢LHS− ψ ↔ ψc
and so ⊢LHS− φ↔ □ψc. Hence ⊢LHS− φ↔ φc.

(3). Finally, the case for φ = ■ψ is similar to (2). The proof is completed. ⊓⊔
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Example 2. Applications of Theorem 4 can be diverse. As an example, we show
how to use it to prove ⊢LHS− □■¬φ↔ ■□¬φ. Let (¬φ)c =

∧n
i=1(ψi ∨ γi) with∧n

i=1 ψi ∈ L□ and
∧n
i=1 γi ∈ L■. By Theorem 4, ⊢LHS− ¬φ ↔ (¬φ)c. Then,

⊢LHS− ■□¬φ ↔ ■□(¬φ)c and ⊢LHS− □■¬φ ↔ □■(¬φ)c. Also, we have
⊢LHS− ■□(¬φ)c ↔

∧n
i=1(□ψi∨■γi) and ⊢LHS− □■(¬φ)c ↔

∧n
i=1(□ψi∨■γi).

Thus, we obtain ⊢LHS− □■¬φ↔ ■□¬φ.

Now, with the help of Theorem 4, we can show that the proof system LHS−

is complete with respect to the class Mod<ω of finite models:

Theorem 5. For each φ ∈ L−, if Mod<ω |= φ then ⊢LHS− φ.

Proof. Let φ ∈ L− and ̸⊢LHS− φ. By Theorem 4, ̸⊢LHS− φc and φc is of the form∧n
i=1(ψi ∨ γi) where

∧n
i=1 ψi ∈ L□ and

∧n
i=1 γi ∈ L■. Since ̸⊢LHS− φc, there is

some i such that ̸⊢LHS− ψi∨γi. By Proposition 11, we have ̸⊢K□ ψi and ̸⊢K■ γi.
By the completeness of K□ and K■, both ¬ψi and ¬γi is satisfiable. Since K□
and K■ have the finite model property [4], there are finite pointed K□-model
⟨M, s⟩ and finite pointed K■-model ⟨N, t⟩ such that M, s ̸|= ψi and N, t ̸|= γi.
Then, by Proposition 7, M⊎N, s, t |= ¬ψi∧¬γi, which entails M⊎N, s, t |= ¬φc.
By Theorem 3 and Theorem 4, Mod<ω ̸|= φ. ⊓⊔

Theorem 6. LHS− enjoys the finite model property, and it is decidable.

Proof. Assume that φ ∈ L− is satisfiable. By the soundness of LHS− (Theorem
3), we have ̸⊢LHS− ¬φ. Then, it follows from Theorem 5 that there is some finite
model M′ satisfying φ. So, the first claim holds. Now, since LHS− can be finitely
axiomatized and has the finite model property, the logic is decidable. ⊓⊔

6 Conclusion

Summary The article is a technical continuation of [15, 16], which explored the
properties LHS, a tool to reason about the games of hide and seek. In the paper,
we show that the satisfiability problem for LHS with a single relation is unde-
cidable. Also, based on existing notions of bisimulations and first-order transla-
tion for LHS, we provide a van Benthem style characterization theorem for the
logic. Moreover, we develop a Hilbert style calculus for LHS− and prove that its
satisfiability problem is decidable, and the details of our proofs are helpful to
understand the differences between LHS− and K× K. All these results can be
transferred to logics generalizing LHS and LHS− for games with n > 2 players.

Related Work As stated, our work is closely related to product logics K× K [8]
and K×δ K [9, 11, 12], cylindric modal logics [21] and cylindric algebra [10]. Also,
there is a line of logical investigation for the hide and seek game. Needless to say,
the most relevant ones are [15] and its extension [16]. The latter offers a notion
of bisimulation for LHS and its first-order translation, proves the undecidability
of LHS with multiple relations, shows that the model-checking problems for both
LHS and LHS− are P-complete, and identifies the counterpart of LHS in product
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logic. Moreover, [19] extends LHS and LHS− with components from hybrid logics,
and study the expressiveness and axiomatization of the resulting logics. Also,
[14] develops logical tools to capture how players update their knowledge about
other players’ positions in the hide and seek game, in which players have only
imperfect information. Finally, it is important to notice that besides the efforts
made for the hide and seek game, many other graph games and their matching
modal logics have also been studied in recent years, and we refer to [2] for a
broad research program on this topic and refer to [13] for extensive references
to modal logics for graph games.

Further Directions Except what we have explored in the article, there are a
number of directions deserving to be explored in future. A natural next step
is to explore the exact complexity of LHS and LHS−. Also, it is important to
study the axiomatizability of LHS, for which it might be useful to analyze the
techniques developed for K×δ K [11]. Closely related to this, [15, 16] provide
preliminary discussions on the difference between the frameworks of LHS and
LHS− and product logics, but their exact relation remains to be explored. For
expressiveness, besides the expressive power of LHS w.r.t. models, the equal-
ity constant I improves the frame definability of LHS as well,8 and it remains
to have a comprehensive understanding of the expressive power of LHS w.r.t.
frames. Moreover, another direction is to develop the proof theory for our logics,
and for instance, provide sequent calculi and tableau systems for them. Finally,
it is worthwhile to generalize our results to broader settings and consider the
extensions of LHS and LHS− with further operators, such as graded modalities
[7, 20] to talk about the degree of a state in a graph.
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Abstract. Weighted programs were recently introduced by Batz et al.
(Proc. ACM Program. Lang. 2022) as a generalization of probabilistic
programs which can also represent optimization problems and, in gen-
eral, programs whose execution traces carry some sort of weight. Batz
et al. show that a weighted version of Dijkstra’s weakest precondition
operator can be used to reason about the competitive ratios of weighted
programs. In this paper we study a propositional abstraction of weighted
programs with three main contributions. First, we formulate a seman-
tics for weighted programs with the weighted weakest precondition op-
erator based on functions from multimonoids to quantales. Second, we
show that the weighted weakest precondition operator corresponds to a
generalization of the domain operator known from Kleene algebra with
domain, and we study the properties of the generalized domain operator.
Third, we formulate a weighted version of Kleene algebra with domain
as a framework for reasoning about weighted programs with weakest
precondition in an abstract setting.

Keywords: Kleene algebra with domain · Kleene algebra with tests ·
Program semantics · Weakest precondition calculus · Weighted programs.

1 Introduction

Weighted programs [2] generalize deterministic while programs and probabilis-
tic programs to a framework that can represent optimization problems and, in
general, can be used to model programs whose execution traces carry some sort
of weight. It is shown in [2] that a weighted version of Dijkstra’s weakest precon-
dition operator can be used to reason about the competitive ratios of weighted
programs. In [23] a version of Kleene algebra with tests [15] is considered that
formalizes reasoning about a propositional abstraction of weighted programs.

In this paper we extend [23] with a formalization of the weighted weakest
precondition operator of [2] using a weak version of the domain operator of
Kleene algebra with domain [3,4]. In Section 2 we introduce our propositional
abstraction of weighted programs, We, which can be seen as an extension of
Guarded Kleene algebra with tests [25]. In Section 3, we propose a semantics
for We based on functions from multimonoids to quantales. This semantics is an
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abstraction of some of the known semantics for Kleene algebra with tests: ordered
pairs and guarded strings are replaced by an abstract multimonoid and functions
to the two-element set of Boolean truth values (i.e. characteristic functions of
sets) are replaced by functions to an arbitrary quantale (complete idempotent
semiring). Our functional semantics builds on the work of [6]. In Section 4, we
show that the weighted weakest precondition operator of [2] can be formalized
within our framework using a weak version of the domain operator of Kleene
algebra with domain [3,4]. This motivates an extension of We with an additional
program operator that corresponds to domain, WeD. In Section 5 we define
WeKAD, a version of Kleene algebra with tests that formalizes reasoning about
WeD. Section 6 briefly discusses related work carried out in [9,10,22,23].

2 A propositional abstraction of weighted programs

The syntax of deterministic while programs [1,12] expresses the core of typical im-
perative programming languages: basic commands are assignments of values (of
specific arithmetic expressions) to variables, and complex programs are built up
from basic commands and a set of Boolean conditions using the skip command,
sequential composition (;), conditional branching (if . . . then . . . else . . .) and
while loops (while . . . do . . .). The state transition semantics of deterministic
while programs assigns to each program a partial function on a set of states;
intuitively, the function associated with a given program assigns state s′ to s iff
the execution of the program in s terminates in s′, and the function is undefined
on s if the execution of the program in s diverges.

Weighted programs as defined in [2] are based on the idea that execution
traces of programs carry weights, typically taken from some semiring of weights.
Weights can be interpreted in probabilistic terms, but also in terms of resource
consumption etc. It is argued in [2] that weighted programs constitute a versatile
framework for specifying mathematical models (such as optimization problems or
probability distributions) in terms of algorithmic representations. Syntactically,
weighted programs extend deterministic while programs by operators allowing
non-deterministic branching and adding weight to the current execution trace.

We define a propositional abstraction of weighted programs where basic com-
mands and basic Boolean expressions are represented by variables.

Definition 1 (Weighted programs). Let P, B and E be disjoint countable sets
of variables. The (propositional) language of weighted programs, LWe, is defined
as follows:

– Boolean expressions: B,C ::= b ∈ B | > | ⊥ | ¬B | B ∧ C | B ∨ C
– Weight expressions: E,F ::= e ∈ E | 1 | 0 | E · F | E + F

– Programs:
P,Q ::= p ∈ P | P ; Q | if B then P else Q | while B do P | P ⊕Q | �E

We define PEB = P∪ E∪ B. The set of all programs (Boolean expressions, weight
expressions) is denoted as Pr (Bt, Wt). We define Exp = Pr ∪Bt ∪Wt .
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Boolean expressions are formulas of the language of classical propositional
logic. Weight expressions represent weights taken from some abstract semiring of
weights (see the semantics specified in Section 3). Programs extend the syntax of
deterministic while programs with non-deterministic branching⊕ and commands
of the form�E read as “add weight (corresponding to) E to the current execution
trace of the program”. We will write P � E instead of P ;�E.

Example 1. Consider the weighted program

while b do (p� e) (1)

This is an ordinary “while b do p” loop, but now with addition of the weight
(corresponding to) e after each iteration of the basic command p.

Example 2. If e represents a value x ∈ [0, 1] and ē represents 1 − x, then the
program

(P � e)⊕ (Q� ē) (2)

represents probabilistic branching: execute P with probability x and Q with
probability 1− x.

Weighted programs as defined here can be seen as an extension of Guarded
Kleene Algebra with Tests (GKAT); see [25]. To see this, note that we can de-
fine skip := �1, abort := �0, and assert B := if B then skip else abort.In fact,
weighted programs are related to ProbGKAT, the recently introduced proba-
bilistic extension of GKAT [22]; see Section 6.

3 Semantics for weighted programs

It is natural to generalize the state transition semantics for deterministic while
programs to a semantics for weighted programs where the interpretation of a
program P is a binary S-weighted relation on a set of states U for some semiring
S, that is, a mapping Ṽ (P ) : (U × U) → S. Intuitively, the value of Ṽ (P ) at
(s, s′) is the minimal weight of an execution trace of P that starts in s and
terminates in s′. In this section, we formulate a variant of such a semantics that
is more general in one sense and more specific in another sense. In particular,
we replace U ×U by a multimonoid [6,17] and our weight algebras will be unital
quantales instead of general semirings.

3.1 Semirings and quantales

We assume familiarity with the notion of a (complete, idempotent) semiring.
We will usually refer to algebras using the name of their universe, so a semiring
(S,+, ·, 0, 1) will in general be referred to as S.
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Example 3. We give four examples of complete idempotent semirings. (1) The
Boolean semiring is (2,∨,∧, 0, 1), where 2 = {0, 1}.

(2) The tropical semiring over extended natural numbers, well known es-
pecially from shortest path algorithms, is (N∞,min,+,∞, 0N), where N∞ =
N ∪ {∞}, ∞ is the top element of the semiring with respect to the partial or-
der induced by semiring addition min, and natural number addition is seen as
semiring multiplication with 0N (natural number zero) as neutral element.

(3) The Łukasiewicz semiring is Ł = ([0, 1],max,&, 0, 1) where [0, 1] is the
real unit interval and & is the Łukasiewicz t-norm x&y = max{0, x + y − 1}.
The Łukasiewicz semiring is well known from fuzzy logic.

(4) The Viterbi semiring (or the product semiring), well known from proba-
bilistic models, is Π = ([0, 1],max,×, 0, 1) where × is multiplication in the real
unit interval.

A semiring can be seen as an abstract representation of weights (or costs).
In particular, semiring multiplication corresponds to weight addition (x · y is
the result of adding weight y to weight x) and so the multiplicative identity 1
corresponds to “zero weight” (since x · 1 = x = 1 · x). The annihilator element
0 corresponds to “absolute weight” (since 0 · x = 0 = x · 0). Semiring addition
reflects, in a sense, ordering of weights. In idempotent semirings, x + y can be
seen as the minimal weight among {x, y}.

Idempotent semirings (also called dioids) are especially fitting as a model
of weights in settings where one considers a set of objects (such as execution
traces of a program), each associated with a weight, and wants to select the
“optimal choice” among the objects. Often the set of objects to choose from is
infinite, however, and so one is naturally led to considering complete idempotent
semirings of weights. Such semirings are a special case of quantales [18,20].

Definition 2 (Quantale). A quantale is a structure (Q,≤, ·) where (Q,≤) is
a complete lattice with supremum

∨
and infimum

∧
, and · is a binary operation

that distributes into joins:

x ·
(∨

i∈I
yi

)
=
∨

i∈I
(x · yi)

(∨

i∈I
yi

)
· x =

∨

i∈I
(yi · x) .

A quantale is unital iff there is a unique 1 ∈ Q such that x · 1 = x = 1 · x.

Complete idempotent semirings are unital quantales.1 In what follows, we
will refer to unital quantales simply as quantales. Each quantale gives rise to a
residuated lattice [8]. Every quantale is a (∗-continuous) Kleene algebra [13,14]
where x∗ =

∨
n∈N x

n. All semirings mentioned in Example 3 are complete idem-
potent semirings, hence quantales.

1 If (S,+, 0) is a complete idempotent commutative monoid, then it is a complete join-
semilattice. Every complete join-semilattice gives rise to a complete lattice. Note that
0 =

∨ ∅.
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3.2 Multimonoids

The set U × U over some U gives rise to a monoid-like structure where the
multiplication operation is partial. A suitable generalization of this example is
given by the notion of a multimonoid [17].

Definition 3 (Multimonoid). A multimonoid is a structure (M,⊗, I) such
that M is a non-empty set, ⊗ : M ×M → 2M is associative and I ⊆ M such
that, for all K ⊆ M , K ⊗ I = K = I ⊗K (assuming the lifting of ⊗ to subsets
of M defined by K ⊗ L = {z | ∃x, y ∈M(x ∈ K & y ∈ L & z ∈ x⊗ y)}).

A multimonoid is local iff, for all x, y, z, u, if u ∈ x⊗ y and y ⊗ z 6= ∅, then
u⊗ z 6= ∅.

The operation ⊗ in multimonoids is nothing but a ternary relation on M . In
multimonoids, every x ∈M has a unique left identity in I (that is, an element e ∈
I such that e⊗x = {x}) and similarly a unique right identity in I (see Appendix
A.1). Local multimonoids will be important in Section 4 and we postpone a more
thorough discussion of their properties until then.

Remark 1. Multimonoids are related to relational frames for relevant and sub-
structural logics [19,21]. These are frames of the form (U,≤, R,N) where R is
a ternary relation on the partially ordered set U , and N is a subset of U that
is closed under ≤ and (i) for all x ∈ U there is y ∈ N such that Ryxx, and (ii)
for all x, y, z ∈ U , if x ∈ N and Rxyz, then y ≤ z. In particular, a multimonoid
is a frame where ≤ is the discrete order, R is fully associative2 and N in addi-
tion satisfies (iii) for all x ∈ U there is y ∈ N such that Rxyx, and (iv) for all
x, y, z ∈ U , if x ∈ N and Ryxz, then y ≤ z.

Example 4. We give two examples of local multimonoids. Many other examples
(of local and non-local multimonoids) are provided in [6,17].

(1) The relational multimonoid over U is (U×U,⊗, idU ) where (x, y)⊗(y′, z)
is {(x, z)} in case y = y′ and ∅ otherwise.

(2) Take a finite subset A of the set of Boolean variables B. Assume that A is
ordered in some arbitrary but fixed way as a1, . . . , an for ai ∈ A. An atom (over
A) is a sequence c1, . . . , cn where each ci is either ai or āi. A guarded string over
A and P [16] is a finite sequence A1p1 . . . An−1pn−1An, where each Ai is an atom
over A and each pi ∈ P. Let GA,P be the set of all guarded strings over A and P.
The coalesced product of two guarded strings is defined as follows:

wA �Bu =

{
wAu if A = B

undefined otherwise.

The coalesced product can be naturally expressed as a ternary relation on
guarded strings and so GA,P is an example of a multimonoid where I is the
set of all atoms.
2 There is w such that Rxyw and Rwzv iff there is u such that Ryzu and Rxuv.
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Let QM be the set of all functions from a multimonoid M to a quantale Q.

Lemma 1. QM is a quantale.

Proof. See [6], Theorem 4.5. The partial order and monoid multiplication in QM
are defined point-wise in the obvious fashion; the multiplicative identity in QM
is the function that assigns the multiplicative identity of Q to x ∈ I and the
annihilator element of Q to all other elements of M . ut

3.3 Functional semantics

A function f ∈ QM is diagonal iff f(x) = 0 for x /∈ I, crisp if f(x) ∈ {1, 0}
and diagonally constant (di-constant) if f(x) = f(y) for all x, y ∈ I. A predicate
is a crisp diagonal function f ∈ QM ; a diagonal function may also be called a
weighted predicate.

Definition 4 (Model). Let M be a multimonoid and Q a quantale. An QM -
model is a function V : PEB→ QM such that

– V (p) is crisp for all p ∈ P;
– V (b) is a predicate for all b ∈ B; and
– V (e) is diagonal and diagonally constant for all e ∈ E.

A QM -model is local iff M is a local multimonoid.

Definition 5 (Interpretation). Given a QM -model V , we define the function
Ṽ : Exp→ QM as follows:

– Ṽ (ξ) = V (ξ) for ξ ∈ PEB;
– Ṽ (B) for Boolean expressions and Ṽ (E) for weight expressions are obtained

using the obvious lifting of Boolean operations to crisp functions and semir-
ing operations to all functions, respectively;

– Ṽ (P ;Q) = Ṽ (P ) · Ṽ (Q);
– Ṽ (if B then P else Q) = (Ṽ (B) · Ṽ (P )) + (Ṽ (¬B) · Ṽ (Q));

– Ṽ (while B do P ) =
(
Ṽ (B) · Ṽ (P )

)∗
· Ṽ (¬B);

– Ṽ (P ⊕Q) = Ṽ (P ) + Ṽ (Q);
– Ṽ (�E) = Ṽ (E).

4 Weighted predicate transformers and domain

4.1 Predicate transformers and weightings

Dijkstra’s predicate transformer semantics for an extension of while programs [5]
assigns to each program P a function wpJP K : 2U → 2U such that wpJP K(Y ) is
the set of all states x such that each computation of P starting in x terminates
in some state in Y . The predicate (set of states) wpJP K(Y ) is known as the
weakest precondition of P with respect to postcondition Y . Dijkstra develops
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a calculus that allows to compute wpJP K(Y ) for each P and Y . A variant of
the weakest precondition operator is the weakest liberal precondition operator
where wlpJP K(Y ) is the set of states x such that each terminating computation
of P starting in x terminates in a state in Y (not all computations of P starting
in x must terminate). Note that wlpJP K is reminiscent of the box operator of
Propositional Dynamic Logic; see [7]. The natural dual of the weakest liberal
precondition operator is the weakest “angelic” precondition operator such that
wapJP K(Y ) is the set of states x such that some computation of P starting in
x terminates in a state in Y . Note that wapJP K is reminiscent of the diamond
operator of Propositional Dynamic Logic.

Batz et al. [2] generalize the notion of weakest angelic precondition as follows.
First, the notion of a predicate (essentially, a function in {1, 0}X or a crisp diag-
onal function in {1, 0}X×X) is generalized to the notion of a weighted predicate
(called a “weighting” by Batz et al.), that is, a function in SU or, equivalently, a
diagonal function in SU×U . Second, a weighted predicate transformer semantics
is defined for each program P where wapJP K : SU → SU operates as follows when
wapJP K(w) is applied to a state s ∈ U : first, the function takes all terminating
execution traces τ ∈ T of P starting in x and computes the accumulated weights
of the traces, obtaining a set of values {tτ | τ ∈ T} for each trace τ ∈ T ; second,
the function adds to the accumulated weight of each trace τ the value of w at
the final state yτ of the trace, thus obtaining {tτ · w(yτ ) | τ ∈ T}; and, third,
wapJP K(w)(x) returns ∑

τ∈T
{tτ · w(yτ )} .

Hence, informally, wapJP K(1)(x) is the weight of the “least expensive” execution
trace of P starting in x. Batz et al. [2] develop a weakest angelic preweighting
calculus that allows to compute wapJP K for each weighted program P , and they
apply the calculus to reasoning about competitive ratios of weighted programs.

4.2 Domain

Recall that in a multimonoidM , each element has a unique left and right identity
in I. That is, for each x ∈M there is a unique y ∈ I such that y⊗ x = {x}, and
a unique z ∈ I such that x⊗ z = {x}. Let us denote the unique left identity of x
as s(x) (for “source”) and the unique right identity as t(x) (for “target”); see [6].

We can formalize the wap operator directly in QM -models for weighted pro-
grams as follows. Let Di(QM ) be the set of all diagonal functions (weighted
predicates) in QM .

Definition 6 (Wap). Given a QM -model V , we define W : Pr → (Di(QM )→
QM ) by stipulating that, for all f ∈ Di(QM ) and x ∈M ,

W (P )(f)(x) =
∨

x=s(y)

(
Ṽ (P )(y) · f(t(y))

)
. (3)
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It is easily seen that W (P )(f) ∈ Di(QM ) (this follows from s(y) ∈ I). The
restriction of the second argument of W to Di(QM ) is not essential.

It can be shown that the W operator can be analysed in terms of a gener-
alisation of the domain operator known from Kleene algebra with domain [3,4]
(the operator also appears in Dynamic Predicate Logic [11]). This particular
generalisation of the domain operator has been considered in [6].

Definition 7 (Domain). We define d : QM → QM as follows:

d(f)(x) =
∨

x=s(y)

f(y) . (4)

It is easily seen that d(f) ∈ Di(QM ) for all f ∈ QM . Proposition 1 specifies
some useful properties of d. Proposition 2 points out some familiar properties
of the domain operator in Kleene algebra with domain that fail in the present
setting.

Proposition 1. The following hold for all f, g ∈ QM and h ∈ Di(QM ):

1. d(h) = h
2. d(f · g) ≤ d(f · d(g))
3. d(d(f) · g) = d(f) · d(g)
4. d

(∨
i∈I fi

)
=
∨
i∈I d(fi)

If M is a local multimonoid, then:

5. d(f · d(g)) ≤ d(f · g)

Proof. See Appendix A.2.

Proposition 2. The following do not hold for all f, g ∈ QM :

1. d(f) ≤ 1
2. f ≤ d(f) · f

Proof. See Appendix A.3.

One of the interesting questions for future work is to characterize the prop-
erties of f ∈ QM in terms of the domain axioms f satisfies.

The main observation of this subsection is that d can be used to define the
W operator. The salient fact is expressed in the following proposition.

Proposition 3. For all f ∈ QM , g ∈ Di(QM ) and x ∈M :

d(f · g)(x) =
∨

x=s(y)

(f(y) · g (t(y))) . (5)

Hence, W (P )(g) = d(Ṽ (P ) · g).

Proof. See Appendix A.4.
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We use Proposition 3 to show that the W operator has the properties of the
wap operator established in [2] (Table 2 on p. 14). However, we need to restrict
the claim to local models.

Theorem 1. Let V be a local QM -model and let f ∈ Di(QM ). The following
claims hold for arbitrary E,B, P and Q (“lfp” means “least fixed point”):

1. W (P ;Q)(f) = W (P )(W (Q)(f));
2. W (if B then P else Q)(f) = Ṽ (B) · (W (P )(f)) + Ṽ (¬B) · (W (Q)(f));
3. W (while B do P )(f) = lfp. ξ

(
Ṽ (¬B)(f) + Ṽ (B)W (P )(ξ)

)
;

4. W (P ⊕Q)(f) = W (P )(f) +W (Q)(f);
5. W (�E)(f) = Ṽ (E) · f .

Proof. We show that the properties of W stated in the theorem follow from
certain facts about arbitrary ∗-continuous Kleene algebras with tests expanded
with a unary operator d satisfying the properties of Proposition 1.3 By Lemma
1 and Proposition 1, QM is such a Kleene algebra (predicates obviously form a
Boolean algebra).

(1.) It is sufficient to show that d(pqr) = d(pd(qr)). This holds by Proposition
1(2., 5.).

(2.) It is sufficient to show that d((bp + b̄q)r) = bd(pr) + b̄d(qr). This is
established as follows:

d((bp+ b̄q)r) = d(bpr + b̄qr)

= d(bpr) + d(b̄qr) Prop. 1(4.)
= d(d(b)pr) + d(d(b̄)qr) Prop. 1(1.)
= bd(pr) + b̄d(qr) Prop. 1(1., 3.)

(3.) It is sufficient to show that if q = d(q), then d((bp)∗b̄q) = α is the
least pre-fixed point of the function φ : e 7→ (b̄q + bd(pe)). First, we show that
φ(α) ≤ α. Since 1 ≤ (bp)∗, we have d(b̄q) ≤ α. However d(b̄q) = b̄q by Prop. 1(1.,
3.) and the assumption q = d(q). Hence, b̄q ≤ α. Next, bd(pα) = d(bp(bp)∗b̄q) by
Prop. 1(1.,2.,3.,5.) and so bd(pα) ≤ α since rr∗ ≤ r∗ in Kleene algebra. Hence,
b̄q + bd(pα) = φ(α) ≤ α.

Now we show that α is the least pre-fixed point of φ. In fact, it is sufficient
to show that the following holds in each KAT satisfying our assumptions (for
arbitrary p, q, r):

d(q + pr) ≤ d(r) ⇒ d(p∗q) ≤ d(r)

In a ∗-continuous KAT, p∗q =
∨
n∈N(pnq). Since d is assumed to be completely

additive, d(p∗q) =
∨
n∈N d(pnq). We prove that d(q+pr) ≤ d(r) implies d(pnq) ≤

d(r) for all n ∈ N. We will not refer to individual claims of Prop. 1 that justify
our steps any longer. Base case: d(q+ pr) ≤ d(r) entails d(q) + d(pr) ≤ d(r) and
3 In particular, the KAT has to satisfy the properties that result from the ones in
Proposition 1 by replacing f, g with arbitrary elements of the KAT and h with an
arbitrary element of the Boolean algebra of tests.
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so p0d(q) ≤ d(r); but this means that d(p0q) ≤ d(r) since p0 = 1. Induction step:
we prove that if d(q + pr) ≤ d(r) ⇒ d(pnq) ≤ d(r), then d(q + pr) ≤ d(r) ⇒
d(pn+1q) ≤ d(r). We assume d(q + pr) ≤ d(r) and we reason as follows:

d(pnq) ≤ d(r)

pd(pnq) ≤ pd(r)

d(pd(pnq)) ≤ d(≤ pd(r))

d(pn+1q) ≤ d(pr) ≤ d(r)

(The last inequation holds by the assumption d(q + pr) ≤ d(r).)
(4.) is a trivial consequence of (finite) additivity of d: d(p+ q) = d(p) + d(q).

(5.) It is sufficient to notice that if p = d(p) and q = d(q), then d(pq) = pq. ut

4.3 Weighted programs with domain

The above result suggests that the weakest angelic preweighting operator could
be integrated into weighted programs by introducing an additional unary pro-
gram operator ♦ corresponding to d via Ṽ (♦P ) = d

(
Ṽ (P )

)
. We call this exten-

sion weighted programs with domain, WeD. The language of WeD does not have
specific variables for weighted predicates, but note that Ṽ (♦P ) is a weighted
predicate for each program P . Therefore, we can consider {♦P | P ∈ Pr} as the
set of expressions denoting weighted predicates. This is similar to how Boolean
predicates are expressed in one-sorted Kleene algebra with domain [4].

5 Weighted Kleene algebra with domain

In this section we abstract away from the multimonoid semantics of WeD and we
define a suitable class of Kleene algebras. These algebras extend Kleene algebras
with weights and tests [23] (by adding the domain operator) which in turn extend
Kleene algebras with tests [15,16]. This move is quite natural since we have
already benefited from the fact that QM is a Kleene algebra.

Definition 8 (WeKAD language). The language of weighted Kleene algebra
with domain (LWeKAD) contains two sorts of terms, namely, Boolean terms and
programs:

– Boolean terms: b, c ::= b ∈ B | 1 | 0 | b̄ | b · c | b+ c
– Programs: p, q ::= p ∈ P | e ∈ E | b | p · q | p+ q | p∗ | d(p)

The language LWeKAD extends the language of Kleene algebra with tests
LKAT with the weight variables e ∈ E and the domain operator d; it also extends
the (two-sorted) language of Kleene algebra with domain LKAD [3] with weight
variables. In fact, however, LWeKAD can be seen as a version of LKAD where P∪ E
is seen as the set of program variables.
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Definition 9 (WeKAD). A weighted Kleene algebra with domain is an alge-
bra of the form

(K,B,Q,+, ·, ∗, −, d, 0, 1)

such that (i) (K,B,+, ·, ∗, −, 0, 1) is a Kleene algebra with tests, (ii) {0, 1} ⊆
Q ⊆ K such that (Q,+, ·, 1) is a unital quantale, and (iii) d : K → K such that
(i ∈ B ∪Q)

d(i) = i (6)
d(p+ q) = d(p) + d(q) (7)

d(p · d(q)) = d(p · q) (8)
d(d(p) · q) = d(p) · d(q) (9)

d(q + pr) ≤ d(r) ⇒ d(p∗q) ≤ d(r) (10)

A WeKAD valuation is any function v : PEB → K such that v(e) ∈ Q and
v(b) ∈ B. Validity of equations is defined as expected.

We note that for each local M , QM with d defined by (4) forms a WeKAD:
define B as the set of predicates and Q as the set of weighted predicates; the
first four domain properties were established in Proposition 1, and the final one
was established in the proof of Theorem 1. Note that d does not need to be
completely additive in WeKADs; we assume axiom (10) instead.

We did not define d as a function K → Q on purpose. This reflects our “in-
tended reading” of Q as the quantale of weights, not the quantale of all weighted
predicates. (This reading is somewhat at odds with the remark concerning QM
in the previous paragraph; see also Problem 3 below.) Weighted predicates can
be seen as elements x ∈ K such that d(x) = x.

At this point, we were able only to scratch the surface of WeKAD. There is
a number of interesting questions we have to leave for future research:

Problem 1: What is the complexity of the equational theory of WeKAD? The
equational theory of (one-sorted) KAD is EXPTIME-complete [24], and we
expect the same for WeKAD.

Problem 2: Is the equational theory of WeKAD identical to the equational the-
ory of some “concrete” subclass of WeKAD, for example the class of algebras
based on QM for local M where d defined by (4)?

Problem 3: WeKAD does not explicitly distinguish between elements of Q that
represent weighted predicates in general and elements that represent con-
stant predicates (diagonally constant diagonal functions in the multimonoid
setting that correspond to elements of the weight quantale). For instance,
in QM nothing prevents the valuation v from assigning a diagonal function
f ∈ QM that is not diagonally constant to a weight variable. Similarly, noth-
ing prevents the valuation v from assigning a non-crisp function f ∈ QM to
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a program variable. Can these distinctions be expressed by (quasi)equations
in the language of WeKAD?4

Problem 4: It is natural to consider “axiomatic extensions” of WeKAD. For
instance, one can add axioms that make Q an MV-algebra (related to the
Łukasiewicz quantale Ł) or a product algebra (related to Π ); see [8].5 It would
be interesting to look at these extensions in general.

6 Related work

In [23], a form of KAT for (the propositional version of) weighted programs is
introduced. This is, essentially, WeKAD minus the domain operator.6 Semantics
of the sort given here is discussed, but it is formulated in terms of so-called
partial semigroups with identity which are a special case of local multimonoids.

Versions of KAT where tests do not form a Boolean algebra are studied in
[9,10]. The motivation is to formalize reasoning about programs, such as fuzzy
controllers, where conditions are not Boolean but may take a value in a com-
mutative and integral residuated lattice.7 There is a close connection to our
approach since, as we noted, every quantale gives rise to a residuated lattice,
which however does not need to be commutative nor integral. Boolean tests are
not considered in [9,10], but this is due to the difference in motivation.

ProbGKAT, a probabilistic extension of GKAT, is studied in [22]. In partic-
ular, ProbGKAT adds to GKAT return variables (which we do not consider),
probabilistic branching p ⊕e q (“do p with probability e and q with probability
ē = 1− e”), and probabilistic loops p[e] which, at each stage of the loop, execute
p with probability e and terminate with probability 1 − e. ProbGKAT can be
seen as using the product quantale Π expanded with bounded subtraction. Our
setting can be seen as a generalization. (Again, we would need to consider − as
defined on Q.) As noted above, probabilistic branching p⊕e q can be represented
in (an extension of) our framework as pe ⊕ qē. It seems plausible that p[e] can
be expressed in our framework as (p · e)∗ · ē, but this still needs to be checked in
detail. A deeper investigation of the relations between WeKAD and ProbGKAT
is left for future work.

7 Conclusion

We studied a propositional abstraction of weighted programs [2] with weighted
weakest precondition. In particular, (i) we defined a semantics for weighted pro-
grams based on functions from multimonoids to quantales [6]; (ii) we have shown

4 E.g. d(p)p = p is a natural candidate for a “definition” of crisp elements but it does
not seem to be adequate.

5 These would in fact require − to be defined on Q as well.
6 In addition, weighted predicates are represented by a semiring, not a quantale.
7 In these residuated lattices, also known as FLew-algebras, multiplication is commu-
tative and the multiplicative identity is the top element; see [8].
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that weighted weakest precondition can be formalized using a weak version of
the domain operator of Kleene algebra with domain (Theorem 1); and (iii) we
outlined WeKAD, a weighted version of Kleene algebra with domain that is suit-
able for reasoning about weighted programs. In many respects, the present paper
just sets the stage for future developments and technical results.
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A Technical appendix

A.1 Identities in multimonoids

Lemma 2. Let M be a multimonoid. For all x, y ∈M and i, j ∈ I:

1. y ∈ (x⊗ i) ∪ (i⊗ x) only if x = y.
2. x ∈ i⊗ j only if i = j.
3. i⊗ i = {i}.

4. i⊗ x = {x} = j ⊗ x only if i = j.

5. x⊗ i = {x} = x⊗ j only if i = j.
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Proof. The proof is based on some of the arguments in [6]. (1.) This holds since
{x}⊗ I = {x} = I ⊗{x} by definition. (2.) If x ∈ i⊗ j, then x = i and x = j by
the previous item. (3.) By definition, i⊗ I = {i}; hence there is j ∈ I such that
i ∈ i⊗ j. By the previous item, i ∈ i⊗ i. If x ∈ i⊗ i, then x = i by the first item.
(4.) If the assumption holds, then ∅ 6= i⊗x = i⊗ (j⊗x) = (i⊗ j)⊗x. It follows
that y ∈ i⊗ j for some y, and so i = j by the second item. (5.) is similar. ut

A.2 Proof of Proposition 1

Before we give the proof, we state a useful lemma of [6] (the following is an
excerpt of their Lemmas 3.1 and 3.3). In the lemma, we use the set lifting of s
defined in the obvious way: for X ⊆ M , s(X) = {s(x) | x ∈ X}. We also write
xy instead of x⊗ y.

Lemma 3. The following holds for each multimonoid M : 1. s(x)s(x) = s(x);
2. s(s(x)y) = s(x)s(y); 3. s(xy) ⊆ s(xs(y)). IfM is local, then 4. s(xs(y)) ⊆ s(xy).

Now we turn to the proof of Proposition 1.

Proof. (1.) If h ∈ Di(QM ), then d(h) = h. Note that d(h)(x) =
∨
x=s(y) h(y) =∨

x=s(y) & y∈I h(y) (the last equality holds since h ∈ Di(QM )). However, s(y) = y

by Lemma 2(1), and so
∨
x=s(y) & y∈I h(y) = h(x).

(2.) d(f · g) ≤ d(f · d(g)). We reason as follows:

d(f · d(g))(x) =
∨

x=s(y)

∨

y∈z⊗u
(f(z) · d(g)(u)) =

∨

x∈s(z⊗u)


f(z) ·

∨

u=s(v)

g(v)




=
∨

x∈s(z⊗s(v))
(f(z) · g(v))

Lemma 3(3)
≥

∨

x∈s(z⊗v)
(f(z) · g(v))

= d(f · g)(x)

We note that (5.) is established in a similar fashion using Lemma 3(3).
(3.) d(d(f) · g) = d(f) · d(g). We reason as follows:

d(d(f) · g)(x) =
∨

x∈s(y⊗z)
(d(f)(y) · g(z)) =

∨

x∈s(y⊗z) & y∈I
(d(f)(y) · g(z))

Lemma 2(1)
=

∨

x∈s(s(x)⊗z)
(d(f)(x) · g(z))

Lemma 3(1, 2)
=


d(f)(x) ·

∨

x=s(z)

g(z)


 = d(f)(x) · d(g)(x)

Lemma 2(1–3)
= (d(f) · d(g)) (x)
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(4.) d
(∨

i∈I fi
)

=
(∨

i∈I d(fi)
)
. This is established as follows:

d

(∨

i∈I
fi

)
(x) =

∨

x=s(y)

(∨

i∈I
fi

)
(y) =

∨

x=s(y)

(∨

i∈I
fi(y)

)

∨

i∈I


 ∨

x=s(y)

fi(y)


 =

∨

i∈I
(d(fi)(x)) =

(∨

i∈I
d(fi)

)
(x)

ut

A.3 Proof of Proposition 2

Proof. (1.) d(f) ≤ 1 is not valid: it is sufficient to consider a non-integral Q (1 is
not the top element). (2.) d(f) ·f = f is not valid: consider the pair multimonoid
{w}×{w} and the non-idempotent product quantale Π where f(w,w) = 0.5. ut

A.4 Proof of Proposition 3

Proof. We reason as follows:

d(f · g)(x) =
∨

x=s(y)

((f · g)(y)) =
∨

x=s(y)

( ∨

y∈u⊗v
(f(u) · g(v))

)

=
∨

x=s(y)


 ∨

y∈u⊗v & v∈I
(f(u) · g(v))


 =

∨

x=s(y)

(f(y) · g(t(y)))

The first two equalities hold by definition. The third equality holds since g is
diagonal. The fourth equality is established as follows: y ∈ y ⊗ t(y), and so the
right hand side is less or equal than the left hand side; conversely, if y ∈ u⊗v &
v ∈ I, then y = u by Lemma 2(1) and v = t(y) since t(y) is the unique right
identity of y by definition. Hence, the left hand side is less or equal than the
right hand side. ut
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Abstract. We investigate a number of semantically defined fragments
of Tarski’s algebra of binary relations, including the function-preserving
fragment. We address the question whether they are generated by a
finite set of operations. We obtain several positive and negative re-
sults along these lines. Specifically, the homomorphism-safe fragment is
finitely generated (both over finite and over arbitrary structures). The
function-preserving fragment is not finitely generated (and, in fact, not
expressible by any finite set of guarded second-order definable function-
preserving operations). Similarly, the total-function-preserving fragment
is not finitely generated (and, in fact, not expressible by any finite set
of guarded second-order definable total-function-preserving operations).
In contrast, the forward-looking function-preserving fragment is finitely
generated by composition, intersection, antidomain, and preferential uni-
on. Similarly, the forward-and-backward-looking injective-function-pre-
serving fragment is finitely generated by composition, intersection, an-
tidomain, inverse, and an ‘injective union’ operation.

1 Introduction

Just as Boolean algebra can be viewed as a language for describing operations
on sets, Tarski’s relation algebra (TRA) is a language for describing operations
on binary relations. The origins of TRA trace back to the 19th century, and,
more specifically, to the work of Augustus De Morgan and Charles Peirce, but
its study intensified when it was picked up by Tarski and his students in the
1940s [31,23,28]. It consists of a small, finite collection of operations on binary
relations (such as composition and union), governed by natural equations such
as R ◦ (S ∪ T ) = (R ◦ S) ∪ (R ◦ T ). If we view TRA as a language for specifying
operations on binary relations, then its expressive power, in terms of the term-
definable operations, corresponds precisely to the three-variable fragment of first-
order logic (FO3) [32].

Many modern graph and tree query languages, such as regular path queries,
SPARQL, and XPath, which describe ways of navigating through graph-struc-
tured data, can be identified with syntactic fragments of TRA. The same holds



homom.- ⊆-safe function- forward
safe preserving

id identity relation yes yes yes yes
∅ empty relation yes yes yes yes
⊤ universal relation (all pairs) yes yes no no

−( · ) complement no no no no
( · )⌣ inverse yes yes no no
D( · ) domain (D(R) = {(x, x) | R(x, y)}) yes yes yes yes
R( · ) range (R(R) = {(y, y) | R(x, y)}) yes yes yes no
∼( · ) antidomain (∼R = {(x, x) | ¬∃y R(x, y)}) no no yes yes

· ∪ · union yes yes no yes
· ∩ · intersection yes yes yes yes
· \ · relative complement no yes yes yes
· ◦ · composition yes yes yes yes
·⋉ · right-semijoin

(R ⋉ S = {(x, y) ∈ R | ∃z S(y, z)}) yes yes yes yes
· ⊔ · preferential union

(R ⊔ S = R ∪ {(x, y) ∈ S | ¬∃z R(x, z)}) no no yes yes

Table 1. Operations on binary relations

for the navigational core of GQL and SQL/PGQ, two standards currently under
development by the ISO standards committee (cf. [11]), and for many other
dynamic and temporal logics. This has generated an interest in systematically
understanding the expressive power of fragments of TRA [10,30,15]. Here, we
study the question whether certain semantically-defined fragments of TRA can
be generated by a finite set of operations. Two known positive results along
these lines are the following, where BRA(O) denotes the binary relation algebra
generated by the operations in O (see Table 1 for a definition of the operations).

Theorem 1 ([3,17]). Both in general and on finite structures: a TRA-term is
“bisimulation safe” if and only if it is equivalent to a BRA(id, ◦,∪,∼)-term.

Theorem 2 (from [22]). Both in general and on finite structures: a TRA-term
is FO2-definable if and only if it is equivalent to a BRA(id,∪,−,⌣,⋉)-term.

We can think of these results as analogous to preservation theorems in (finite)
model theory: they correlate a semantic property with expressibility in a natural,
finitely-generated, syntactic fragment. These two results may suggest that vari-
ous other semantically-defined fragments of TRA could be similarly characterised
syntactically by a finite basis of operations. One particular prominent semantic
fragment that arises naturally in different contexts, is the function-preserving
fragment of TRA [26]. It has been an open problem whether this fragment is
finitely generated. We settle this in the negative. We also obtain positive results
for three semantic fragments of TRA: the homomorphism-safe fragment, the
forward function-preserving fragment, and the local injective-function-preserving
fragment. We study each of these fragments both in the general case (i.e., where
the input relations may be relations on infinite sets) and in the finite.
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Related Work. Börner and Pöschel [7] studied whether various clones of oper-
ations on binary relations over a fixed finite structure are finitely generated.
Their study includes the “logical clone” (which is the set of all first-order defin-
able operations) as well as the “positive clone” (which is the set of all operations
definable by positive-existential first-order formulas). Our investigation is dif-
ferent in that we are interested in the existence of finite bases over all (finite)
structures. We will further comment on the relationship between our results and
those by Börner and Pöschel in Section 3.

Andréka et al. [1] and Börner [6] consider the problem whether certain finitely
generated clones of operations on binary relations are in fact generated by a
single operator (analogous to the Sheffer stroke in Boolean algebra), and what
is the minimum possible arity of such an operation.

There is a substantial literature on algebras of partial functions (that is,
function-preserving fragments of TRA), focusing on the axiomatisation of their
first-order theories as well as computational aspects such as decidability and the
finite model property. An overview of known results can be found in [26].

In the literature on temporal logics, there have been extensive studies con-
cerning the existence of temporal logics generated by a finite set of operations,
that are expressively complete for first-order logic in the sense of Kamp’s theo-
rem [19] (see [12] for an overview). One of the main differences with our setting
is that, in temporal logic, the operators are typically monadic (i.e., they corre-
spond to FO-formulas in one free variable), whereas in our case, the operators
act on, and produce, binary relations (and hence correspond to FO-formulas in
two free variables). Closer to our setting is Venema [34], who studies expressive
completeness for interval temporal logics, and showed that, on dense linear or-
ders, no finite set of binary operations is expressively complete for FO; and the
results on Conditional XPath by Marx [25], which imply that (a fragment of)
TRA is expressively complete for FO over finite sibling-ordered trees. Both are
concerned with definability of binary relations. Note however, that our objective
differs from that of [34,25]: we are not restricted to linear orders or trees, and we
are not primarily interested in expressive completeness with respect to FO, but
rather expressive completeness with respect to (semantic fragments of) Tarski’s
relation algebra, or, equivalently, FO3.

2 Preliminaries

First-order logic and guarded second-order logic. We restrict to structures over
signatures consisting of binary relation symbols only. We write FO for first-order
logic, and we denote by FOk (for k ≥ 1) the k-variable fragment of FO, that
is, the fragment of FO consisting of formulas that use only k variables, where
nested quantifiers may reuse the same variable.

We will also consider guarded second-order logic (GSO [13], also known as
MSO2 [9]), which extends first-order logic with monadic second-order quantifica-
tion (i.e., quantification over sets) as well as guarded second-order quantification,
by which we mean quantifications over subrelations of (not-necessarily-monadic)
relations in the signature. Thus, for example, we can express in GSO that a pair
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(x, y) lies on a Hamiltonian cycle in a digraph, which is a property that cannot
be expressed in MSO [21].

The quantifier rank of a GSO-formula ϕ is the maximum nesting depth of
first-order and/or second-order quantifiers. We will write A ≡nGSO B to indicate
that two structures agree on all GSO-sentences of quantifier rank at most n.

Binary relation algebras. An n-ary operation on binary relations is a map O from
first-order structures A = (dom(A), RA1 , . . . , R

A
n ) to binary relations O(A) ⊆

dom(A)2 that is isomorphism invariant: for every isomorphism h : A ∼= B,
it holds that h : (dom(A), O(A)) ∼= (dom(B), O(B)). We say that O is FO-
definable if there is an FO-formula ϕ(x, y) such that O(A) = {(a, b) ∈ dom(A)2 |
A |= ϕ(a, b)} for all A. A binary relation algebra is given by a collection O of
operations on binary relations. We denote it by BRA(O). We say that the algebra
is FO if all its operations are FO-definable.

Note: at first sight, the above definition of operations on binary relations may
seem unnatural because the input type (first-order structure) and the output
type (binary relation) are different, and therefore it may not seem obvious how
these operations compose with each other. However, this is merely cosmetic. In
order to account for operations such as the absolute complement (−R), the input
must include a domain. The output O(A) of an operation O applied to a first-
order structure A could also be represented as a first-order structure, namely
A′ = (dom(A), O(A)), although this would be redundant as the output domain
always coincides with the input domain.

Terms, term definable, finitely generated. Fix a binary relation algebra A =
BRA(O). By an n-ary term of A we mean an expression built up from relation
symbols R1, . . . , Rn using operations from O as function symbols. We denote by
Ot the n-ary operation on binary relations defined by the term t in the evident
way. We say that two n-ary terms t and t′ are equivalent (in the finite) if, for
all (finite) structures A = (dom(A), RA1 , . . . , R

A
n ), Ot(A) = Ot′(A). We say that

an operation on binary relations is term definable (in the finite) in A if there
is a term of A that defines it (over finite structures). Note that, if O consists
of FO-definable operations, then every term of BRA(O) defines an FO-definable
operation. In fact, if every operation in O is FOk-definable (for some k ≥ 2) then
every BRA(O)-term also defines an FOk-definable operation. The same applies
in the finite.

A binary relation algebra BRA(O) is finitely generated if there is a finite
subset O′ ⊆ O, such that every operation in O is term definable in BRA(O′).

Tarski’s relation algebra. Tarski’s relation algebra (TRA) is an example of an FO
binary relation algebra. It can be defined as TRA := BRA(id, ∅,−,∩, ◦,⌣). All
operations in Table 1 are term definable in TRA. Kleene Algebra is an example of
a non-FO binary relation algebra, which includes the (GSO-definable) reflexive
transitive closure operation. We omit the definition, as we will not study it here.

A classic result on TRA states:

Theorem 3 ([32]). Both in general and in the finite: an operation on binary
relations is term definable in TRA if and only if it is FO3-definable.
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The following is an easy consequence of the well-known fact that FO does
not collapse to any of its finite variable fragments; cf. also [34, Theorem 2.13].

Theorem 4. Both in general and in the finite: the binary relation algebra con-
sisting of all FO-definable operations is not finitely generated.

3 The homomorphism-safe fragment is finitely generated

Recall that a homomorphism h : A → B is a function from the domain of A
to the domain of B that preserves structure, i.e. such that (a, b) ∈ RA implies
(h(a), h(b)) ∈ RB . We say that an operation O on binary relations is homo-
morphism safe if, for every homomorphism h : A → B and (a, b) ∈ O(A),
(h(a), h(b)) ∈ O(B). Equivalently, O is homomorphism safe if and only if every
homomorphism h : A→ B is also a homomorphism h : (A,O(A)) → (B,O(B)),
where (A,O(A)) denotes the expansion of the structure A with O(A) as an ad-
ditional relation, and similarly for (B,O(B)). Thus, intuitively, one can think of
homomorphism-safe operations as homomorphism-preserving operations.

As indicated in Table 1, examples of homomorphism-safe operations are ∪,
∩, and ◦, but not −.

Theorem 5. Both in general and in the finite: a TRA-term is homomorphism-
safe if and only if it is equivalent to a BRA(id, ∅,⊤, ◦,∪,∩,⌣)-term.

Proof. We will make use of recent results regarding homomorphism-preserved
FO-formulas [8]. Formally, we say that an FO-formula ϕ(x1, . . . , xn) is homo-
morphism preserved if for every homomorphism h : A→ B and tuple of elements
a1, . . . , an ∈ dom(A), we haveA |= ϕ(a1, . . . , an) impliesB |= ϕ(h(a1), . . . , h(an)).
A classic theorem in model theory (known as the Lyndon preservation theorem)
states that a first-order formula is homomorphism preserved if and only if it
is equivalent to a positive-existential FO-formula (i.e., a formula built up from
atomic formulas using only existential quantification, conjunction, and disjunc-
tion). Rossman [29] proved that this holds also in the finite. Bova and Chen [8]
further refined this to finite-variable fragments (both on arbitrary structures and
in the finite): they showed that every homomorphism-preserved FOk formula is
equivalent to a positive-existential FOk-formula.

Let us now proceed with the proof of our theorem. By Theorem 3, it suf-
fices to show that every FO3-formula ϕ(x, y) (with two free variables) that is
homomorphism preserved can be translated to the TRA fragment in question.
Moreover, by the aforementioned results of Bova and Chen, we may assume that
ϕ(x, y) is a positive-existential FO3-formula. We inductively translate ϕ(x, y) to
a term in the specified fragment of TRA. Note that our induction hypothesis here
specifically applies to formulas with (at most) two free variables. The base cases
(R(x, y), x = y, ⊤, and ⊥) are straightforward; R(y, x) translates to R⌣. Con-
junction and disjunction are straightforward as well (due to the way we stated
the induction hypothesis). Therefore, only the case remains where ϕ(x, y) is of
the form ∃zψ(x, y, z). It is not hard to see that ψ must, in this case, be a positive
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Boolean combination of formulas with at most two free variables. That is, ψ can
be written as a disjunction of conjunctions of formulas with at most two free vari-
ables. Furthermore, we can pull the disjunction out from under the existential
quantifier, and deal with it separately. Therefore, we can assume without loss of
generality that ψ is a conjunction of formulas with two free variables. By group-
ing the conjuncts appropriately, we can write ψ as ψ1(x, y)∧ψ2(x, z)∧ψ3(z, y).
By the induction hypothesis, each of these can be translated to a TRA-term,
say, t1, t2, t3. We can then translate ϕ as t1 ∩ (t2 ◦ t3). ⊓⊔

It is worth comparing Theorem 5 to results by Börner and Pöschel [7], which
state that the “logical clone” (which is defined as the binary relation algebra
consisting of all FO-definable operations on binary relations) as well as the “pos-
itive clone” (the binary relation algebra consisting of all operations on binary
relations definable by a positive-existential FO-formula) over any fixed finite
structure are finitely generated. By Rossman [29], the operations that can be
defined by a positive-existential FO-formula are precisely the homomorphism-
safe FO-definable operations. We see that Theorem 5 is incomparable to the
results just mentioned. On the one hand, it is only concerned with TRA-term-
definable operations. On the other hand, it states that there is a finite basis
of operations from which all homomorphism-safe TRA-terms are term definable
over all (finite) structures.

One may wonder whether the approach taken in the proof of Theorem 5
could be used to establish a  Los–Tarski-style theorem for TRA, characterising the
fragment of TRA that is preserved by the ⊆ relation, where, by A ⊆ B, we mean
that A is an induced substructure of B. More precisely we say that a first-order
formula ϕ(x1, . . . , xn) is ⊆-safe if, whenever A ⊆ B and a1, . . . , an ∈ dom(A) and
A |= ϕ(a1, . . . , an), then B |= ϕ(a1, . . . , an). The classic  Los–Tarski preservation
theorem (rephrased using our terminology) states that, on unrestricted (i.e.,
possibly infinite) stuctures, an FO operation is ⊆-safe if and only if it can be
defined by an existential FO-formula. As it turns out, however, the  Los–Tarski
theorem fails for FO3. More precisely, it has been shown [2] that (both in general
and in the finite), there is an FO3-formula, over a signature consisting of binary
relations only, that is ⊆-safe but cannot be defined by an existential FO3-formula.
This shows that the approach we used for the homomorphism-safe fragment of
TRA will not work for the ⊆-safe fragment. However, it leaves the question open
whether the ⊆-safe fragment of TRA is finitely generated.

4 The function-preserving fragment is not finitely
generated

Let O be an n-ary operation on binary relations. We say that O is function
preserving if the following holds for all structures A = (dom(A), RA1 , . . . , R

A
n ):

if each RAi is a partial function on dom(A), then O(A) is a partial function
on dom(A). Similarly, we say that O is total-function preserving if the following
holds for all structures A = (dom(A), RA1 , . . . , R

A
n ): if each RAi is a total function

on dom(A), then O(A) is a total function on dom(A).
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As indicated in Table 1, the following are function preserving: id, ∅, D, R, ∼,
∩, \, ◦, ⋉, and ⊔. See also [26]. Let us define function algebra (FA) as the binary
relation algebra with these operations. The class of universal algebras isomorphic
to a set of partial functions equipped with these operations was axiomatised
using a finite number of equations in [16], where this collection of operations
was described as “in an informal sense at least, the richest natural case”.

Our main result in this section is:

Theorem 6. Let O be any finite set of function-preserving GSO-definable op-
erations on binary relations. Then there is a function-preserving operation on
binary relations O that is term definable in TRA but not in BRA(O), even over
finite structures in which all relations are partial functions.

The proof will use the following lemma (where ⊎ denotes disjoint union):

Lemma 1. For all structures A,A′, B,B′ and n > 0, if A ≡nGSO A′ and B ≡nGSO

B′ then A ⊎B ≡nGSO A′ ⊎B′.

Proof. The lemma follows from more general Feferman–Vaught theorems for
MSO [24], but can also be shown directly using a straightforward Ehrenfeucht–
Fraisse-style game argument: in the game for GSO, Spoiler can make two types of
moves: those corresponding to first-order quantification and those corresponding
to monadic or guarded second-order quantification. A move of the first type
involves picking an element, which must belong either in the “left half” of the
structure or to the “right half”. A move of the second type involves selecting
either a set of elements, or a set of a tuples from a relation in the structure, and
in either case, the set in question can be naturally partitioned into two halves,
the “left half” and the “right half”. Duplicator can therefore respond to each
type of move simply by using her winning strategies for the two halves. ⊓⊔

Proof (Proof of Theorem 6). Let n be a number greater than the maximum
quantifier rank of the GSO-formulas defining the operations in O.

For m ≥ 0, let Cm be the directed graph that has a vertex ai,j for every
i ∈ {1, . . . ,m} and j ∈ {1, 2, 3}, and that has an edge from ai,j to ai′,j′ whenever
i′ = (i mod m) + 1. In other words, Cm is a directed cycle of length m in which
every vertex is replaced by three vertices. Then let C∨

m be the structure over the
signature {f, g} obtained from Cm by replacing every edge by an (f⌣ ◦ g)-path
(using a fresh intermediate vertex each time). See Figure 1. We will refer to the
vertices of the form ai,j as “normal nodes” and the added intermediate vertices
as “auxiliary nodes”.

Claim 1: There are m ̸= m′ such that, in the structure C := C∨
m ⊎ C∨

m′ ,
all normal nodes satisfy the same GSO-formulas ϕ(x) of quantifier rank n and
likewise for the auxiliary nodes.

Proof of claim: Since there are (up to equivalence) only finitely many GSO-
sentences of quantifier rank n, by the pigeonhole principle, there exist m ̸= m′

such that C∨
m ≡n+1

GSO C∨
m′ . Therefore, by Lemma 1, C∨

m ⊎ C∨
m′ ≡n+1

GSO C∨
m ⊎ C∨

m.
It is also easy to see that every normal node in C∨

m ⊎ C∨
m can be mapped by
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Fig. 1. Structure C∨
m

an isomorphism to every other normal node. It follows by the invariance of
GSO under isomorphism that every normal node in C∨

m ⊎C∨
m satisfies the same

GSO-formulas ϕ(x), and similarly for the auxiliary nodes. In other words, for all
GSO-formulas ϕ(x), we have that

C∨
m ⊎ C∨

m |= ∀x(normal(x) → ϕ(x)) ∨ ∀x(normal(x) → ¬ϕ(x))

C∨
m ⊎ C∨

m |= ∀x(auxiliary(x) → ϕ(x)) ∨ ∀x(auxiliary(x) → ¬ϕ(x))

where normal(x) is shorthand for ∃yf(y, x) and auxiliary(x) is shorthand for
∃yf(x, y). Since C∨

m ⊎ C∨
m′ ≡n+1

GSO C∨
m ⊎ C∨

m, the same holds in the structure
C∨
m ⊎C∨

m′ for ϕ of quantifier rank at most n. This concludes the proof Claim 1.

Note that the signature of C is {f, g} and that f and g are partial functions.
Let the set X consist of the following partial functions over the domain of C:

– f ,
– g,
– the identity function id,
– id1 which is id restricted to the auxiliary nodes,
– id2 which is id restricted to the normal nodes,
– f ∪ id2,
– g ∪ id2,
– the empty relation ∅.

Each of the partial functions in X is TRA-term definable in C, and it will be
convenient to expand C with these partial functions. That is, we will treat C as
a structure over a signature consisting of these eight partial functions.

Claim 2: If ϕ(x, y) is a GSO-formula of quantifier rank less than n that is
function-preserving, then the partial function defined by ϕ(x, y) in C belongs to
X.

In other words, the claim is that no function-preserving GSO-operation with
quantifier rank smaller than n can take us outside of the set X. Since each
operation in O is defined by a GSO-formula of quantifier rank less than n, and
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is function preserving, this implies, by induction, that every term of BRA(O)
denotes one of the relations in X in C. This then implies Theorem 6: consider
the TRA-term (f⌣◦g)m∩id, where ( · )m stands for an m-fold composition. This
term denotes the identity relation restricted to the normal nodes of Cm only;
this relation does not belong to X. Therefore, this term cannot be equivalent to
any term of BRA(O). Nevertheless it is function preserving, simply because its
interpretation always consists only of reflexive edges.

In the remainder of the proof, we prove Claim 2.

Subclaim 1: C |= ϕ(a, b) implies that (a, b) belongs to f ∪g∪ id. In other word,
ϕ defines a subrelation of f ∪ g ∪ id in C.

Subclaim 1 can be shown using a simple automorphism argument: suppose
that C |= ϕ(a, b), and suppose, for the sake of a contradiction, that b is not equal
to f(a), g(a), or a itself. It then follows from the construction of the structure
C that there exists some b′ ̸= b such that (C, a, b) ∼= (C, a, b′), and therefore
C |= ϕ(a, b′). For instance, if a is of the form ai,1 and b = ai,2, then we can pick
b′ to be ai,3. This contradicts the assumption that ϕ(x, y) is function preserving.

Subclaim 2: If C |= ϕ(a, b) and f(a) = b, then for all a′ and b′ with f(a′) = b′

we have that C |= ϕ(a′, b′). Likewise for the functions g, id1, and id2.

We will discuss the case for f . The same argument applies to g, while the cases
for id1 and id2 follow immediately from Claim 1. If C, a, b |= ϕ(x, y), then C, a |=
∃y(f(x, y)∧ϕ(x, y)); therefore, by Claim 1, we have C, a′ |= ∃y(f(x, y)∧ϕ(x, y)),
and therefore, since f is a partial function, we have C, a′, b′ |= ϕ(x, y).

Claim 2 now follows easily from the two subclaims. ⊓⊔

With some minor modifications, the same argument applies to total-function-
preserving operations:

Theorem 7. Let O be a finite set of total-function-preserving GSO-definable
operations on binary relations. Then there is a total-function-preserving oper-
ation O that is term definable in TRA but not in BRA(O), even over finite
structures in which every relation is a total function.

Proof. (sketch) We use the same construction as before, except that we extend
the structure C with an additional “sink node” s and an additional function
∅̂ where ∅̂(c) = s for all nodes c (including s itself). Observe that ∅̂ is a total

function. We also extend the partial functions f and g to total functions f̂ and
ĝ, by setting f̂(c) = ĝ(c) = s for every normal node c and f̂(s) = ĝ(s) = s. Note
that the old partial functions f and g are TRA-term definable from the new

ones, namely as f = f̂ − (⊤◦ ∅̂) and g = ĝ− (⊤◦ ∅̂). Now the same argument as

before shows that the TRA-term
(
(f⌣ ◦ g)m ∩ id

)
⊔ ∅̂ (where f and g are now

shorthand for the aforementioned terms, and where ⊔ is the preferential union
operator) defines a total-function-preserving operation that is not term definable
in BRA(O). ⊓⊔
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As a consequence of Theorem 6, we obtain the following (where FA is as
defined in the beginning of this section):

Corollary 1. Both in general and in the finite:

1. The function-preserving fragment of TRA is not finitely generated. In par-
ticular, not every function-preserving TRA-term is term definable in FA.

2. The homomorphism-safe function-preserving fragment of TRA is not finitely
generated.

3. The ⊆-safe function-preserving fragment of TRA is not finitely generated.

The first item follows immediately from Theorem 6. The other items follow
from the proof. This is because the TRA-term used as counterexample in the
proof, i.e., (f⌣ ◦g)m∩ id, uses only operations that are homomorphism safe and
⊆-safe. (Note that the same does not hold in the total-function-preserving case
because there we used preferential union.)

Given that the function-preserving fragment of TRA is not finitely generated,
one may ask if it is at least generated by a recursive set of operations. This is
indeed the case, for a trivial reason: for any TRA term t, consider the term
t′ = t \ (t ◦ (⊤ \ id)). By construction t′ always outputs a partial function.
Furthermore, on any input where t produces a partial function, t′ produces
the same output as t. Therefore, the function-preserving fragment of TRA is
generated by the (recursive) set of all TRA-terms of the form t \ (t ◦ (⊤ \ id)).

Question 1. Can FA be characterised as a fragment of TRA using additional
properties besides function preserving (or using a stronger notion of “function
preserving”)?

5 The forward function-preserving fragment is finitely
generated

In our proof of Theorem 6, we made use of the fact that any binary relation can
be represented as a composition f⌣ ◦ g, where f, g are partial functions. That
is, we crucially made use of the inverse operation. This is indeed essential to
the proof: if we restrict attention to direction-preserving operations we do get a
binary relation algebra that is finitely generated.

Formally, we say that an n-ary operation O on binary relations is forward if
for all structures A over signature σ = {R1, . . . , Rn} and for all pairs (a, b) ∈
dom(A), we have that (a, b) ∈ O(A) if and only if (a, b) ∈ O(Aa) where Aa is
the substructure of A generated by a, i.e., the induced substructure of A whose
domain consists of all elements reachable from a by a finite directed path along
the relations RA1 , . . . , R

A
n . In particular, this implies that, whenever (a, b) ∈ O(A)

then b must belong to Aa. We say that O is forward over a class of structures
K if the above holds for all structures A ∈ K.

Lemma 2. Let K be any FO-definable class of structures, and let O be any
FO-definable operation on binary relations that is forward over K. Then there
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is a natural number m such that, for all structures A ∈ K and a, b ∈ dom(A),
whether (a, b) belongs to O(A) depends only on the substructure of A consisting
of the elements reachable from a by a directed path of length at most m.

Proof. This can be shown using a simple compactness argument [4]: let χ be the
FO-sentence defining K, and let n be the arity of the operation O. By assump-
tion, O is defined by a first-order formula ϕ(x, y) over the signature consisting
of the relation symbols R1, . . . , Rn. Let P be a fresh unary relation symbol,
let ϕP be the result of relativising all quantifiers in ϕ by P (i.e., replacing
∃z by ∃z(P (z) ∧ . . .) and replacing ∀z by ∀z(P (z) → . . .)). Furthermore, for
every natural number k, let ψk(x) be the FO-formula expressing that all ele-
ments reachable from x by a directed path of length at most k satisfy P . Then
{χ, ψk(x) | k ≥ 0} |= ∀y(ϕ(x, y) ↔ (P (y)∧ϕP (x, y))). It follows by compactness
that, for some m, {χ, ψk(x) | 0 ≤ k ≤ m} |= ∀y(ϕ(x, y) ↔ (P (y) ∧ ϕP (x, y))).
This proves the lemma. ⊓⊔

Theorem 8. Let Kpf be the class of structures in which each relation is a partial
function, and let O be any FO operation on binary relations. The following are
equivalent:

1. O is function preserving and forward over Kpf,
2. O is term-definable in BRA(◦,∼,∩,⊔) over Kpf.

Proof. The direction from 2 to 1 is straightforward. For the direction from 1 to
2: let O be any n-ary FO operation that is function preserving and forward over
Kpf. From the fact that O it forward over Kpf, it follows by Lemma 2 that there
exists a constant m > 0 (depending on O) such that whether a pair (a, b) belongs
to O(A), for A ∈ Kpf, depends only on the substructure B ⊆ A consisting of the
elements reachable from a by a directed path of length at most m. For A ∈ Kpf,
such a substructure B can be of size at most nO(m). There are only finitely
many isomorphism types of such structures B. Furthermore, for each such B,
the structure (B, a) can be characterised up to isomorphism by an intersection
χB,a of terms of the following forms:

– ∼(f1 ◦ · · · ◦ fk)
“there is no outgoing f1 ◦ · · · ◦ fk path”

– ∼∼(f1 ◦ · · · ◦ fk)
“there is an outgoing f1 ◦ · · · ◦ fk path”

– ∼(f1 ◦ · · · ◦ fk ∩ g1 ◦ · · · ◦ gl)
“the outgoing f1 ◦ · · · ◦fk path and the outgoing g1 ◦ · · · ◦gl path do not lead
to the same node”

– ∼∼(f1 ◦ · · · ◦ fk ∩ g1 ◦ · · · ◦ gl)
“the outgoing f1 ◦ · · · ◦ fk path and the outgoing g1 ◦ · · · ◦ gl path do lead to
the same node”

Note that here we implicitly use id (which is definable as ∼(∼f ◦f)) for the case
where k = 0 or l = 0. Finally, we can take our term to be χB,a◦(f1◦· · ·◦fk) where
f1, . . . , fk describes an arbitrary directed path from a to b (or simply χB,a if the
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path is empty). Doing this for each isomorphism type of structure B |= ϕ(a, b),
we obtain finitely many terms (defining relations that are guaranteed to be
pairwise disjoint from each other) we then combine using the preferential union
operator (in arbitrary order, since they are pairwise disjoint). Or ∅ (definable as
∼f ◦ f) in case there is no B |= ϕ(a, b). ⊓⊔

The collection {◦,∼,∩,⊔} of operations identified in Theorem 8 is one that
has already been investigated in the literature. Specifically, Jackson and Stokes
[18] give a finite equational axiomatisation of the class of algebras isomorphic to
a set of partial functions equipped with these operations. The equational theory
of these algebras is coNP-complete [16].

Question 2. Does Theorem 8 hold in the finite?

We can adapt the proof of Theorem 8 to obtain a similar, undirected, result
for injective partial functions. For this, we say that O is injective-function pre-
serving if the following holds for all structuresA = (dom(A), RA1 , . . . , R

A
n ): if each

RAi is an injective partial function on dom(A), then O(A) is an injective partial
function on dom(A). Let us also say that that an n-ary operation O on binary re-
lations is local if for all structures A over signature σ = {R1, . . . , Rn} and for all
pairs (a, b) ∈ dom(A), we have that (a, b) ∈ O(A) if and only if (a, b) ∈ O(A↔

a )
where A↔

a is the induced substructure of A whose domain consists of all elements
reachable from a by a finite undirected path along the relations RA1 , . . . , R

A
n . As

before, this implies that, whenever (a, b) ∈ O(A) then b must belong to A↔
a .

To state the result, we first define a variant of preferential union that is
injective-function preserving. We call this new operation injective union and
use ⊔1 to denote it. The operation adds to its first argument any pairs from its
second argument whose addition does not violate functionality or injectivity.
One possible term definition of injective union is f ⊔1 g := (f ⊔ g)∩ (f⌣ ⊔ g⌣)⌣.

Theorem 9. Let Kipf be the class of structures in which each relation is an
injective partial function, and let O be any FO operation on binary relations.
The following are equivalent:

1. O is injective-function preserving and local over Kipf.
2. O is term-definable in BRA(◦,∼,∩,⌣,⊔1) over Kipf.

Proof. (sketch) We can obtain an undirected analog of Lemma 2 using a similar
proof. That is, if an FO-definable operation is local over Kipf, then there is a
number m such that, for all structures A ∈ Kipf and a, b ∈ dom(A), whether
(a, b) belongs to O(A) depends only on the substructure of A consisting of the
elements reachable from a by an undirected path of length at most m. Next, the
same proof used for Theorem 8 works if we replace every instance of ‘directed
path’ by ‘oriented path’ (i.e., sequence of possibly reverse-oriented edges), use
⌣ to express reverse-oriented edges in such paths, and use ⊔1 in place of ⊔. ⊓⊔

The collection {◦,∼,∩,⌣,⊔1} of operations identified in Theorem 9 is one that
has been considered in the literature on inverse semigroups. Any set of injective
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partial functions closed under these operations forms a Boolean inverse monoid
in the sense of Lawson [20]; indeed these are the canonical examples of Boolean
inverse monoids. Conversely, from the results of Lawson it can be seen that any
Boolean inverse monoid is isomorphic to one of these algebras of injective partial
functions. Thus Theorem 9 demonstrates that within the program of studying
enrichments of inverse semigroups, the Boolean inverse monoids are in a sense
the fully enriched instances.

6 Conclusion

In summary, our results show that certain semantic fragments of Tarski’s relation
algebra, such as the homomorphism-safe fragment, admit a syntactic character-
isation in terms of a finite set of operations, while others, such as the function-
preserving fragment, do not. We hope that these results show that the study
of preservation theorems in the context of algebras of binary relations is an
interesting topic. We conclude by listing a few directions for further research.

Firstly, one could explore the same questions for other semantic properties of
operations on binary relations (e.g., additivity [5]). Secondly, our results concern
fragments of TRA, but the same questions can be asked for Kleene Algebra. In
particular, our results leave open the question whether the function-preserving
fragment of Kleene Algebra is finitely generated. Finally, various applications of
TRA in computer science and elsewhere are concerned with a restricted class of
structures, such as finite trees (e.g., XPath), linear orders (e.g., interval temporal
logics), or variable-assignment spaces (e.g., dynamic predicate logic [14] and the
Logic of Information Flows (LIF) [33]). Indeed, results in [27] regarding deter-
ministic fragments of LIF are what inspired the present paper. It is meaningful
to ask whether our results hold also over these restricted classes of structures.
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Abstract. Spatial logics are formalisms for expressing topological prop-
erties of structures based on geometrical entities and relations. In this pa-
per we consider SLCS, the Spatial Logic for Closure Spaces, recently used
for describing features of images and video frames. We extend SLCS in
two directions. We first introduce first-order quantifiers, ranging on both
individuals and atomic propositions. We then equip the logic with tem-
poral operators, and provide a linear-time semantics over finite traces.
The resulting formalism allows to state properties about geometrical en-
tities whose attributes change along time. For both extensions, we prove
the equivalence of their operational semantics with a denotational one.

1 Introduction

Spatial logics are formalisms for expressing topological properties of structures
based on geometrical entities and relations, and as such have been extensively
studied since the first half of the last century [1]. Recently, such logics have been
further explored for the modelling of computational devices, ranging from collec-
tive adaptive [13, 14] and cyber-physical systems [24, 22] to pattern synthesis [5].

Introduced in [16], the Spatial Logic for Closure Spaces (SLCS) uses as
models a generalisation of topological spaces, known as pretopological or Čech
closure spaces. These spaces include interesting structures such as binary re-
lations/simple graphs. And since images can be interpreted as graphs, whose
structure is given by pixels with a chosen adjacency relation, the SLCS model
checker VoxLogicA [7] has been used for the analysis of 2D/3D pictures, in par-
ticular for the problem of “contouring” in medical imaging [4, 6].

SLCS has proved to be quite expressive in characterising the structural prop-
erties of a graph. However, it does not possess operators for constructing named
references to “individuals” — be these points, regions, atomic propositions, or
agents moving in space. For instance, one might ask if there is a region X of an
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image, satisfying a given logical property, which in some time will become larger
than another one. This kind of analysis has immediate applications in medical
imaging for lesion tracking, focussing on the temporal evolution of a lesion in
a series of snapshots of a patient’s situation (a “longitudinal study”). In this
work, we develop the ideas of [16] and [10], adopting the same setting of [17] to
model spatio-temporal situations. First of all, we provide a precise correspon-
dence between spaces and relations, streamlining various results discussed in the
literature on SLCS. We also present a succinct syntax of SLCS, including just the
backward ~ρ and forward ~ρ reachability operators, which reflect the well-known
until operator of temporal logic and have efficient model checking algorithms
in VoxLogicA. Such operators allow to state properties of points of space akin
to there is a finite path from point x1 to some point x2, such that x2 satisfies
a given formula φ2, and the path passes only through points satisfying another
formula φ1. Taking inspiration from [10], we introduce two extensions of SLCS.
The first one concerns first-order quantification, which may predicate on points
of a space and the atomic propositions they may satisfy. The second introduces
temporal operators, similar in spirit to [14]. Finally, these extensions are merged,
distilling an expressive and flexible quantified spatio-temporal logic.

A running example: video stream analysis. The logic we propose allows to state
properties involving the identity of a node, in a graph whose structure does not
change, yet the propositions holding at each node may. Throughout the paper, we
illustrate its expressiveness by a simple example: the analysis of video streams,
demonstrated using the well-known Pac-Man™ videogame. The example is taken
from [11], where only purely spatial properties were considered.

Pac-Man is a 2D video game released by the Japanese firm Bandai-Namco
in 1980. It has a simple, yet interesting structure: the main character of the
game, Pac-Man, moves inside a maze. Along the corridors, several peach dots
are placed, together with four energiser pellets positioned in the corners. Fur-
thermore, four coloured ghosts (Inky, Blinky, Pinky, and Clyde) try to capture
Pac-Man, moving in the maze according to different routines. A twist happens
when Pac-Man eats an energiser pellet: in this case, the ghosts’ colours turn to
blue, and they can be caught by Pac-Man instead. The aim of a single level is
to eat all the dots and pellets, avoiding to be captured by a ghost.

Despite its simplicity, the Pac-Man videogame is a clear example of appli-
cability of our logical framework. The spatial structure does not change along
time: the graph underlying each video frame is always the same. Instead, atomic
properties associated to a node/pixel, that is, the colours, vary along time: for
example, Pac-Man is represented by yellow-coloured pixels that are inside the
maze (note that there are other areas with the same colour, representing the
remaining lives, see Figure 1). Such a setting is useful in real-world applications.
Consider, for instance, lesion tracking in medical imaging. The input data are
snapshots of a patient at different times. After what is called the co-registration
phase, all images have the same structure (resolution and physical dimensions).
In other words, the underlying graph never changes, while the colours of the
pixels, i.e. the atomic propositions, change along the temporal axis.



Related work The task to investigate quantification in modal logic interpreted
over spaces was already tackled in various works. An important example are
the works by Awodey and Kishida [2, 21], where first order modal logic is pro-
vided with a topological interpretation. The proposed approach is quite different
from ours: in this case, sheaves are used to combine denotational semantics of
modal logic and first order logic, and quantification is permitted only over points.
Moreover, this approach applies only to topological spaces.

Spatio-temporal reasoning has also been a topic of interest along years, and
various approaches have been proposed to combine space and time. Products
of modal logics have been considered to this end [8]. Products of modal logics
give rise to multi-modal logic languages, where different modal operators can
be used to reason about different aspects of a model (in this case, the spatial
and temporal aspects). Despite the fact that we also consider products of modal
logics, the cited proposal is quite different. Again in this case, only topological
structures are considered, and the temporal fragment is interpreted over the pair
(N, <), thus being equivalent to the classic PTL temporal logic. In our case, in-
stead, we only consider interpretation over finite traces. A comprehensive study
of spatio-temporal approaches to modal logics is given by [17], where various
kinds of spaces (e.g. Euclidean or Aleksandroff) are considered. This work of-
fers an interesting study of the tradeoff between expressivity and complexity of
various spatio-temporal logic, and it is our main reference for state-of-the-art
languages that combine space and time. Still, the topic of the considered logics
is topological spaces, thus lacking the generality that we aim to have.
Closer to our proposal, and in some sense orthogonal to it, is the one developed
in [14], where branching time operator where introduced and no quantification
was considered. In this case, the language was developed to reason about evolv-
ing smart systems (e.g. bike sharing systems), thus a branching time logic was
adopted for the temporal part. We drop this kind of approach in favour of lin-
ear time operators, which are more likely to be useful in a setting of medical
imaging, where we state properties about a set of images on a single timeline.

Synopsis. The structure of the paper follows. Section 2 gives an overview of the
models currently used for SLCS and we recast them uniformly, making precise
the correspondence with binary relations/simple graphs. Section 3, presents a
succinct version of SLCS, which is equipped with existential quantifiers in Sec-
tion 4 and with linear-time operators in Section 5. Finally, Section 6 proposes a
quantified spatio-temporal logic. Each section gives the correspondence between
the semantics with respect to a single spatial path/temporal trace and a de-
notational one, and it is rounded up with an instance of our running example.
Section 7 closes the paper, summing up our results and hinting at future works.

2 Some notions on spaces and relations

We recall some notions related to spaces, used as domains of interpretation
of various logics (see [1]) including SLCS, and discuss their links with binary
relations/simple graphs, making precise remarks scattered in papers on SLCS.



2.1 Preliminaries on spaces

We open by listing some basic properties and definitions for spaces.

Definition 1. A space C is a pair (S,C) such that S is a set of points and
C : 2S → 2S is a function satisfying C(∅) = ∅ and C(X ∪ Y ) = C(X) ∪ C(Y )
for X,Y ⊆ S. A space is complete if C(

⋃
i∈I Xi) =

⋃
i∈I C(Xi) for any I.

If S is finite then a space (S,C) is always complete. Given a space (S,C) and
a subset X ⊆ S, we denote the complement S\X of X in S as Xc. And while C is
called the closure operator, its dual is the interior I(X) = C(Xc)c = S\C(S\X).

Definition 2. A space (S,C) is pre-topological if X ⊆ C(X) holds for all X ⊆
S; it is Alexandrov if it is pre-topological and complete; and it is topological if
it is pre-topological and C(C(X)) ⊆ C(X) holds for all X ⊆ S.

The notions above are standard from the literature on topology. In the lit-
erature on spatial logics, pre-topological and Alexandrov spaces are called Cêch
closure spaces and quasi-discrete Cêch closure spaces, respectively.

Note that for any space we can define a sort of inverse C−1 = (S,C−1), for
C−1(X) =

⋃
x∈X{y | x ∈ C({y})}, which is complete by definition. In order

to identify those cases where a space and its inverse interact properly, we take
inspiration from modal algebras and introduce the notion of conjugate spaces.

Definition 3. Two spaces (S,C1) and (S,C2) are conjugate if they satisfy X ⊆
I1(C2(X)) ∩ I2(C1(X)).

Remark 1. The law for conjugate spaces can be stated as “C1(X) ⊆ Y iff X ⊆
C2(Y )”, which explicitly tells that the two closures are the respective inverses.

Proposition 1. Let C be a complete space. Then C and C−1 are conjugate.

Proof. We just need to prove that for any X,Y we have that C(X) ∩ Y = ∅ iff
X ∩C−1(Y ) = ∅. Now, let us assume that C(X)∩Y = ∅ and there exists x such
that x ∈ X ∩C−1(Y ). Thus x ∈ X and x ∈ C−1(Y ). By definition, x ∈ C−1(Y )
implies that there exists y ∈ Y such that x ∈ C−1({y}), that is, y ∈ C({x}),
hence y ∈ C(X) since C is complete, thus y ∈ C(X) ∩ Y , a contradiction. The
inverse direction is analogous.

Remark 2. Note that we cannot drop the completeness requirement for C in the
proposition above. Consider e.g. the set N of natural numbers and a function
C : 2N → 2N such that C(X) = ∅ if X is either empty or finite, and C(X) = N if
X is infinite. Clearly, (N, C) is a space, albeit not complete. Now, we have that
C({n}) = ∅ for all n ∈ N, so that C−1({m}) = {n | m ∈ C({n})} = ∅ for all
m ∈ N, which implies that C−1(Y ) = ∅ for all Y ⊆ N. Thus, for any infinite set
X ⊆ N, we have that C(X) ∩ Y = Y while X ∩ C−1(Y ) = ∅.



2.2 Spaces vs. relations

There is a reason to focus on complete spaces, namely, the fact that they have
a tight connection with binary relations (i.e. simple graphs/unlabelled Kripke
frames). In the following we consider relations on a set S: we identify them as
functions R : S → 2S and denote 2R : 2S → 2S the lifting 2R(X) =

⋃
x∈X R(x).

Now, each space C = (S,C) induces a relation RC : S → 2S defined as
RC(x) = C({x}). Note that for any finite X ⊆ S it holds 2RC (X) = C(X), and
the equality holds also for infinite X if C is complete. Vice versa, each relation
R : S → 2S induces a complete space CR = (S,CR) defined as CR(X) = 2R(X).

Lemma 1. Let R : S → 2S be a relation. Then RCR(x) = R(x) for all x ∈ S.
Let C be a complete space. Then CRC (X) = C(X) for all X ⊆ S.

Thus, interpreting logics on complete spaces is the same as using as models
the underlying relations. What is also noteworthy is that some laws holding for
complete spaces turn out to state structural properties of such relations.

Proposition 2. Let C be a complete space and RC the associated relation. Then

– C satisfies X ⊆ C(X) iff RC is reflexive

– C satisfies C(C(X)) ⊆ C(X) iff RC is transitive

– C satisfies X ⊆ I(C(X)) iff RC is symmetric

Proof. The first two items are kind of obvious thanks to Proposition 1. Thus,
let us now look at the third property. For RC being symmetric means that for
all x, y it holds that y ∈ RC(x) iff x ∈ RC(y) or, equivalently, that y 6∈ RC(x)
iff x 6∈ RC(y). Satisfying X ⊆ I(C(X)) means that X ⊆ C(C(X)c)c. Recall
now that for a complete space we have 2RC (X) = C(X), and for the sake of
calculations consider the relation D(x) = S \RC(x). Thus, axiom X ⊆ I(C(X))
can be expressed as X ⊆ C(

⋂
x∈X D(x))c =

⋂
z∈⋂x∈X D(x)D(z).

(=⇒) Let us assume that there exist x, y such that x ∈ RC(y) and y ∈ D(x).
Assuming X = {x}, the axiom becomes x ∈ ⋂z∈D(x)D(z). Since y ∈ D(x), the

axiom implies x ∈ D(y), which contradicts x ∈ RC(y).

(⇐=) Let us assume that RC is symmetric and that there exists X such
that X 6⊆ I(C(X)). The latter means that there exists y ∈ X such that y 6∈
I(C(X)). So, there exists w ∈ ⋂x∈X D(x) such that y 6∈ D(w), i.e. y ∈ RC(w).
By symmetry w ∈ RC(y), that is, w 6∈ D(y), which contradicts w ∈ ⋂x∈X D(x).

Finally, recall how for a space (S,C) we defined a kind of inverse space
(S,C−1), inspired by the analogous notion for relations: in fact, given R : S →
2S , its inverse R−1 : S → 2S is the relation such that R−1(x) = {y | x ∈ R(y)}.

Proposition 3. Let (S,C) be a space. Then R−1C = RC−1 .



3 Spatial logics

This section recalls syntax and semantics of spatial logics (SL), introduces its
denotational semantics, and makes precise its connection with CTL.

We start by assuming a set P of atomic propositions, ranged over by a, b, . . .

Definition 4. The formulae Φ of SL are given by the grammar

Φ ::= true | a | ¬Φ | Φ ∧ Φ | ~ρ Φ[Φ] | ~ρ Φ[Φ]

We denote the Boolean operators false = ¬true and (Φ∨Φ) = ¬(¬Φ∧¬Φ).

We also denote ~N Φ = ~ρ Φ[false] and ~N Φ = ~ρ Φ[false], which for our models
are the equivalent of next and previous in temporal logics (as made precise later).

Let us now consider the semantics. Since we focus on complete spaces, we
may equivalently describe our models in terms of relations. Thus, a model T is
a four-tuple 〈S,R, P, L〉 such that S is a set of points, R : S → 2S a relation,
P a set of atomic propositions, and L : P → 2S a labelling function. We also
define the standard notion of spatial path in T from point s0 to point sn, i.e., a
sequence s0 . . . sn with n ≥ 1 such that si ∈ R(si−1) for all i = 1 . . . n.

Definition 5. Let T be a model. The semantics of a SL formula Φ with respect
to a point s ∈ S is given by the rules

– s |= true

– s |= a if s ∈ L(a)
– s |= ¬Φ if s 6|= Φ
– s |= Φ1 ∧ Φ2 if s |= Φ1 and s |= Φ2

– s |= ~ρ Φ1[Φ2] if there exists a spatial path ss1 . . . sn in T such that sn |= Φ1

and sj |= Φ2 for all j = 1 . . . n− 1
– s |= ~ρ Φ1[Φ2] if there exists a spatial path s0 . . . sn−1s in T such that s0 |= Φ1

and sj |= Φ2 for all j = 1 . . . n− 1

The derived Boolean operators behave as expected, e.g. s 6|= false for all

states s. We recover the intuitive meaning of ~N Φ (hence, the existence of a
direct connection between two points) as ~ρ Φ[false], since s |= ~ρ Φ[false] is

equivalent to say that s1 |= Φ for some s1 ∈ R(s). Similarly for ~N with respect

to R−1. Finally, note that ~N and ~N distribute over the Boolean disjunction
operator, so that e.g. s |= ~N (Φ1 ∨ Φ2) iff s |= ( ~N Φ1) ∨ ( ~N Φ2).

Lemma 2. Let T be a model, s ∈ S a point, and Φ1, Φ2 SL formulae. Then
s |= ~ρ Φ1[Φ2] iff s |= ~N Φ1 ∨ ~N (Φ2 ∧ ~ρ Φ1[Φ2]) (and similarly for ~ρ Φ1[Φ2]).

Proof. Let s |= ~ρ Φ1[Φ2]. It holds if there exists a path ss1 . . . sn in T such that
sn |= Φ1 and sj |= Φ2 for all j = 1 . . . n − 1. Let us assume that n = 1. This is

equivalent to say that s1 |= Φ1, hence s |= ~N Φ1. So, let n > 1. This means that
s1 |= Φ2, sn |= Φ1, and sj |= Φ2 for all j = 2 . . . n−1, which is in turn equivalent

to state that s |= ~N (Φ2 ∧ ~ρ Φ1[Φ2]).



Fig. 1. A sequence of Pac-Man frames: ghosts turn to blue immediately after frame 2.

Example 1. Consider our running example, in particular the first frame of Fig-
ure 1. As said above, we assume we have a set of atomic propositions AP denoting
colours. There is only one area satisfying the formula orange, namely the or-
ange ghost. On the other hand, three different areas satisfy yellow and, for the
moment being, we are not able to distinguish the active Pac-Man from the ones
representing the remaining lives. However, we can already check an interesting
property. So, let ghost = orange ∨ pink ∨ lightBlue ∨ red. The pixels of
a Pac-Man that is going to be caught by a ghost are identified via the formula
yellow ∧ ~ρ ghost[yellow]. Such formula finds all the yellow pixels that are con-
nected, via a path of yellow ones (except the last one, see Definition 5), to a pixel
belonging to a ghost. Indeed, no such pixel exists in the three frames considered.

3.1 Denotational semantics of SL

The denotational meaning of a formula Φ is going to be a set of points in our
model T . The interpretation of the Boolean and the next and previous step
operators is immediate: only the reachability operators need some care.

Definition 6. Let T be a model. The denotational semantics of a SL formula
Φ is given by the rules

– JtrueK = S
– JaK = L(a)
– J¬ΦK = JΦKc = S \ JΦK
– JΦ1 ∧ Φ2K = JΦ1K ∩ JΦ2K
– J ~N ΦK = 2R

−1

(JΦK) = {s ∈ S | R(s) ∩ JΦK 6= ∅}
– J ~N ΦK = 2R(JΦK) = {s ∈ S | R−1(s) ∩ JΦK 6= ∅}
– J~ρ Φ1[Φ2]K = lfpZ (J ~N Φ1K ∪ J ~N (Φ2 ∧ Z)K)
– J ~ρ Φ1[Φ2]K = lfpZ (J ~N Φ1K ∪ J ~N (Φ2 ∧ Z)K)

The semantics associates a set of points to a formula. The interpretation of
the ~N and ~N operators is clearly monotone with respect to subset inclusion, thus
the least fix-point in the semantics of the ~ρ and ~ρ operators are well-defined.



Remark 3. For the sake of simplicity, in Definition 6 we considered ~N and ~N
as primitive operators, instead of derived ones. However, it is easy to see that
J~ρ Φ[false]K = lfpZ (J ~N ΦK ∪ (J ~N (false ∧ Z)K)) = J ~N ΦK, and analogously

J ~ρ Φ[false]K = J ~N ΦK. Also note that J~ρ false[Φ]K = lfpZ (J ~N falseK∪(J ~N (Φ∧
Z)K)) = ∅, and again analogously J ~ρ false[Φ]K = ∅.
Proposition 4. Let T be a model, s ∈ S a point, and Φ a SL formula. Then
s |= Φ iff s ∈ JΦK.

Proof. The proof is immediate for all operators except reachability. Consider
e.g. the next operator: we have that s |= ~N Φ iff s1 |= Φ for some s1 ∈ R(s) iff
R(s)∩JΦK 6= ∅, the latter by inductive hypothesis. And we noted in Remark 3 that

the semantics of the derived operators is respected, i.e. J~ρ Φ[false]K = J ~N ΦK.
Now, recall that by Lemma 2 s |= ~ρΦ1[Φ2] iff s |= ~N Φ1 ∨ ~N (Φ2 ∧ ~ρΦ1[Φ2]).
(=⇒) By induction on the length of the path ss1 . . . sn verifying s |= ~ρΦ1[Φ2].

If n = 1, then s1 |= Φ1, hence s1 ∈ JΦ1K and s ∈ J ~N Φ1K, Otherwise, s1 |=
Φ2 ∧ ~ρΦ1[Φ2] with a path of length n − 1, hence s1 ∈ JΦ2 ∧ ~ρΦ1[Φ2]K and s ∈
J ~N (Φ2 ∧ ~ρΦ1[Φ2]K). In both cases, we have that s ∈ J~ρ Φ1[Φ2]K.

(⇐=) By induction on the number r of recursive steps Z1, Z2 . . . Zr. If

r = 1, then s ∈ J ~N Φ1K, hence there exists s1 ∈ R(S)∩ JΦ1K, thus s1 ∈ R(S) and

s1 |= JΦ1K. For r = n + 1, either s ∈ J ~N Φ1K, and we fall back to the previous

case, or s ∈ J ~N (Φ2∧Zn)K. Hence there exists s1 ∈ R(S)∩ JΦ2K∩ JZnK, so the by
inductive hypothesis s1 |= Φ2∧~ρΦ1[Φ2]. In both cases, we have that s |= ~ρ Φ1[Φ2].

3.2 SL vs. CTL

We make here precise the connection between SL and CTL. The state formulas
for the existential fragment of CTL (ECTL) can be expressed by the grammar

Ψ ::= true | a | ¬Ψ | Ψ ∧ Ψ | ∃OΨ | ∃U(Ψ, Ψ)

Note that this fragment is not as expressive as CTL, since it is missing the
operators ∀OΨ and ∀U(Ψ, Ψ). And while the former is CTL-equivalent to ¬∃O¬Ψ ,
the latter cannot be expressed in the fragment: it requires the operator ∃�.

Let us now prove the equivalence of ECTL with the forward fragment of
SL (FSL), i.e. SL without the backward operator ~ρ. We do not recall here the
semantics for CTL, and we refer the reader to a standard reference such as [3].

The encodings. For any FSL formula Φ we must obtain an ECTL formula JΦK
such that for any model T and state s in T we have that s |=SL Φ iff s |=CTL JΦK.
Clearly, the Boolean operators are mapped one-to-one, while ~ρ Φ1[Φ2] is mapped

into ∃O(∃U(JΦ2K, JΦ1K)). Note that, as a derived operator, ~N Φ is mapped into
∃O(∃U(false, JΦK)), which is CTL-equivalent to ∃OJΦK.

Viceversa, for any ECTL formula Ψ we must obtain a FSL formula
∥∥Ψ
∥∥.

As before, the Boolean operators are mapped one-to-one, while instead ∃OΨ is
mapped to ~N

∥∥Ψ
∥∥ and ∃U(Ψ1, Ψ2) is mapped to

∥∥Ψ2

∥∥ ∨ (
∥∥Ψ1

∥∥ ∧ ~ρ
∥∥Ψ2

∥∥[
∥∥Ψ1

∥∥]).

Again, for any model T and state s in T we have that s |=CTL Ψ iff s |=SL

∥∥Ψ
∥∥.



Encodings are mutually inverse. We proceed by structural induction, assuming
that for the sub-formulae it holds that J

∥∥Ψ
∥∥K and Ψ are CTL-equivalent and∥∥JΦK

∥∥ and Φ are SL-equivalent.

Starting from ECTL, we have that

– J
∥∥∃OΨ

∥∥K = J ~N
∥∥Ψ
∥∥K = ∃O(∃U(false, J

∥∥Ψ
∥∥K))

– J
∥∥∃U(Ψ1, Ψ2)

∥∥K = J
∥∥Ψ2

∥∥ ∨ (
∥∥Ψ1

∥∥ ∧ ~ρ
∥∥Ψ2

∥∥[
∥∥Ψ1

∥∥])K = J
∥∥Ψ2

∥∥K ∨ (J
∥∥Ψ1

∥∥K ∧
J~ρ
∥∥Ψ2

∥∥[
∥∥Ψ1

∥∥]K) = J
∥∥Ψ2

∥∥K ∨ (J
∥∥Ψ1

∥∥K ∧ ∃O(∃U(J
∥∥Ψ1

∥∥K, J
∥∥Ψ2

∥∥K)))

and the result follows since for the former case ∃U(false, J
∥∥Ψ
∥∥K) is CTL-equivalent

to J
∥∥Ψ
∥∥K and for the latter case it is the well-known expansion law for ∃U.

Moving from FSL, we have that

–
∥∥J~ρ Φ1[Φ2]K

∥∥ =
∥∥∃O(∃U(JΦ2K, JΦ1K))

∥∥ = ~N
∥∥∃U(JΦ2K, JΦ1K)

∥∥ = ~N (J
∥∥Φ1

∥∥K ∨
(J
∥∥Φ2

∥∥K ∧ ~ρ J
∥∥Φ1

∥∥K[J
∥∥Φ2

∥∥K])
The two formulae are SL-equivalent, as shown in Lemma 2.

4 Quantified spatial logics

We now move to a Quantified Spatial Logic (QSL). In the following, we fix a set
of typed variables V = VP ] VS ranged over by x, y, xP , yP , xS , yS . . .

Definition 7. The formulae Φ of QSL are given by the grammar

Φ ::= true | a | x | x = y | ¬Φ | Φ ∧ Φ | ~ρ Φ[Φ] | ~ρ Φ[Φ] | ∃x.Φ

Definition 8. Let T be a model. The semantics of a QSL formula Φ with respect
to a point s ∈ S and a substitution η : V ⇀ P ] S is given by the rules

– s, η |= xP if s ∈ L(η(xP ))
– s, η |= xS if s = η(xS)
– s, η |= x = y if η(x) = η(y)
– s, η |= ∃xP .Φ if there exists a proposition a1 such that s, η[a1/xP ] |= Φ
– s, η |= ∃xS .Φ if there exists a point s1 such that s, η[s1/xS ] |= Φ

for η[a1/xP ] and η[s1/xS ] the standard extensions of a substitution η.

For the sake of readability, we showed only the rules for the variables and the
existential operators, and implicitly assumed that equality x = y is well-typed.

Remark 4. Variables may take values either in points or in atomic propositions.
Hence, we have statements such as s, η |= x ∧ y with η(x) a point and η(y) an
atomic proposition, which still has a clear semantics: it holds if s = η(x) and
s ∈ L(η(y)). As recalled, we implicitly have typed equality x =τ y for variables
x, y of the same type τ , which is either S for points or P for atomic propositions.
With respect to [10], we lack an explicit constant this for characterising the
current state, which can be obtained by using a point variable x occurring in a



formula Φ and simply checking s |= ∃x.(x ∧ Φ). In general, the equality xS = a,
meaning that the point associated to xS by a substitution η satisfies proposition
a, is recovered as xS ∧ a. Also lacking are equalities xP = a for proposition a:
they seem less relevant, and could be added with little effort.

Remark 5. A further step along the lines above is to assume that variables take
values in sets of points, i.e. η : V → 2S , obtaining a second-order quantification.
It would simply mean to add an additional type for second-order variables and
possibly a monadic operator ∈, as in x ∈ X. Note that in this case the equality
x = y for point variables could be derived as ∀X . x ∈ X ⇐⇒ y ∈ X.

4.1 Denotational semantics for QSL

The denotational meaning of a QSL formula Φ is going to be a set of points in
our model T . We define our denotational mapping J·Kη as follows.

Definition 9. Let T be a model. The denotational semantics of a QSL formula
Φ with respect to a substitution η is given by the rules

– JxP Kη = L(η(xP ))
– JxSKη = {η(xS)}
– Jx = yKη =

{
S if η(x) = η(y)
∅ otherwise

– J∃xP .ΦKη =
⋃
a∈P JΦKη[a/xP ]

– J∃xS .ΦKη =
⋃
s∈SJΦKη[s/xS ]

As before, we just showed the rules for variables and existential operators.

Remark 6. It should be no surprise now that the equality J∃x. ~NΦKη = J ~N∃x.ΦKη
holds for any η, and similarly for ~N . Indeed, the shape of a single frame never
changes, hence QSL satisfies what is called the domain-preserving property.

Now, let ⊥ : V ⇀ P ] S denote the always undefined substitution.

Proposition 5. Let T be a model, s ∈ S a point, and Φ a closed QSL formula.
Then s,⊥ |= Φ iff s ∈ JΦK⊥.

Remark 7. Quantification over atomic proposition is intended to model the idea
of quantifying over “labels” that identify sets of points sharing similar features,
in such a way that the number of available labels is infinite and model-dependent.
This does not imply that the set of labels that are present in each state is infinite:
it could as well be that, in a system with infinite states, the number of labels
of each state is finite, but no state has the same set of labels. In this situation,
typical e.g. of nominal computations [23], it might not be possible to know in
advance which labels will be present in a state of the model. But this does not
rule out the possibility of asking meaningful questions, such as “is there a point
labelled with xP in the current state, which in the next state will not be labelled
with xP and near to a point labelled with xP ?”, which could be interpreted as
the entity denoted by xP has moved by one step in one instant of time.



Although it is perhaps easier to grasp the intuition when models have a
temporal aspect, the idea is also useful in purely spatial situations. One case
often occurring in computational imaging is that of reasoning about connected
components. Consider a spatial formula φ interpreted over a digital image. No
matter what φ is, the semantics will identify the set of points S on which φ holds.
In many situations one could be interested in questions such as “identify the set of
points S′ that belong to a connected region R of S, which also satisfies ψ”. In our
view, connectedness is not a primitive of the logical language (as connectedness
is just one example of application of quantification over atomic propositions!).
Rather, the model must contain enough information to reason – in this case –
about connected components, by having a different atomic proposition for each
component1. In this situation, one does not know in advance neither how many
components (hence, atomic propositions) will be available, nor the exact set of
labels, but still, existential quantification over atomic propositions can be used.

Example 2. Using the aforementioned encoding of connected component labels
as atomic propositions, we are able to identify entities in a given space. Continu-
ing from Example 1, we now assume that for each frame the set of atomic prop-
erties includes colours as well as the labels of the connected components of the
yellow pixels. We can now characterise in each frame the pixels on the border of
the active Pac-Man as Φ = yellow∧∀xP . (~ρ (xP ∧yellow)[black] =⇒ xP ), since
the active Pac-Man cannot reach those outside while these latter are mutually
reachable, and the whole active Pac-Man via the formula yellow ∧ ~ρ Φ[yellow].

5 Spatio-temporal logics

The definitions below have the following rationale. In analysing video frames we
basically deal with sequences of graphs, each one of them a snapshot of an image.
The structure of the graph remains the same: only the labelling changes, i.e the
atomic propositions each point satisfies. Also, note that when we state proper-
ties of sequences of graphs, we often do not even have a way to generate such
sequences. Think e.g. about the scans of the brain: they are given by physicians,
and they are not obtained by a set of rules, since they are just snapshots taken at
certain intervals of time. We might thus have a single trace as model. This is the
reason for the choice of linear time, hence of our Spatio-Temporal Logic (STL):
the following proposals could be easily rephrased in terms of computational trees.

Definition 10. The formulae Φ of STL are given by the grammar

Φ ::= true | a | ¬Φ | Φ ∧ Φ | ~ρ Φ[Φ] | ~ρ Φ[Φ] | OΦ | U(Φ,Φ)

1 In model checking, this is accomplished at model definition time, by including a non-
logical operator which performs a labelling of connected components, taking as input a
Boolean-labelled frame and returning a integer-labelled frame, where each connected
component is identified by a unique integer. See [9] where the on-GPU variant of the
spatial model checker VoxLogicA has been endowed with such a primitive.



A spatio-temporal model S is a four-tuple 〈S, P,R,Λ0〉, where S is a set of
points, P a set of atomic propositions, R : S → 2S a (spatial) relation, Λ0 ⊂ Λ+

a set of temporal traces of length at least 1, for Λ = {L | L : P → 2S} the set of
labelings. We give the semantics of the formulae with respect to a point s and a
finite trace λ. Given a temporal trace λ = L0L1 . . . , Ln, we denote by λ(i) the
sequence LiLi+1 . . ., by λi its i-th component Li, and with l(λ) its length n+ 1.

Definition 11. Let T be a spatio-temporal model. The semantics of a STL for-
mula Φ with respect to a point s ∈ S and a temporal trace λ ∈ Λ0 is given by the
rules

– s, λ |= OΦ if 1 < l(λ) and s, λ(1) |= Φ

– s, λ |= U(Φ1, Φ2) if there exists k < l(λ) such that s, λ(k) |= Φ2 and s, λ(j) |=
Φ1 for all j = 0 . . . k − 1

Remark 8. Since we are using finite temporal traces, a few considerations are in
order. As a start, a formula OΦ is satisfiable by a temporal trace if it is of length
at least two, so that last = ¬Otrue actually characterises its last component.
Such an operator allows an easy characterisation for the nesting of temporal
operators, since �♦Φ and ♦�Φ are equivalent to ♦(last ∧ Φ) [19].

A related question is which axioms hold. As an example, ¬OΦ and O¬Φ are
equivalent only for temporal traces of length at least two, since OΦ is always
false for temporal traces of length 1. Instead, the usual unfolding axiom for the
until operator holds, that is, s, λ |= U(Φ1, Φ2) iff s, λ |= Φ2 ∨ (Φ1 ∧ OU(Φ1, Φ2)).

The interaction between spatial and temporal operators needs to be explored.
For example, ~ρ Oa[Ob] is equivalent to O(~ρ a[b]), since the structure of the model
(points and their relations) never changes during the steps of a temporal trace.

5.1 Denotational semantics of STL

The denotational meaning of a formula Φ is going to be a set of points in our
model T . We define our denotational mapping J·Kλ as follows.

Definition 12. Let T be a spatio-temporal model. The denotational semantics
of a STL formula Φ with respect to a temporal trace λ ∈ Λ0 is given by the rules

– JOΦKλ =

{ JΦKλ(1) if 1 < l(λ)
∅ otherwise

– JU(Φ1, Φ2)Kλ = lfpW (JΦ2Kλ ∪ (JΦ1Kλ ∩ JOW Kλ))

As before, we presented the mapping only for the newly introduced temporal
operators. As for the reachability operators, the fix-point for U is well-defined.

Proposition 6. Let T be a spatio-temporal model, s ∈ S a point, λ ∈ Λ0 a
temporal trace, and Φ a STL formula. Then s, λ |= Φ iff s ∈ JΦKλ.



Proof. Similarly to the operators of spatial logics in the proof of Proposition 4,
we will basically proceed by induction on the structure of the formulae, consid-
ering here also the length of the temporal trace. We just look at the additional
temporal operators, noting that it is obvious for the next operator OΦ. Recall,
see Remark 8, that formulae U(Φ1, Φ2) and Φ2∨(Φ1∧OU(Φ1, Φ2)) are equivalent.

(⇐=) By induction on the structure of the formulae and the length of the
temporal trace. If s, λ |= Φ2 ∨ (Φ1 ∧ OU(Φ1, Φ2)), then either s, λ |= Φ2, hence
s ∈ JΦ2Kλ by inductive hypothesis, or s, λ |= OU(Φ1, Φ2), thus s |= Φ1 and
s, λ(1) |= U(Φ1, Φ2), hence s ∈ JΦ1Kλ ∩ JOW Kλ by inductive hypothesis.

(=⇒) By induction on the number r of recursive steps W1, W2 . . . Wr and
the length of the temporal trace. If r = 1, then s ∈ JΦ2Kλ, and we are done by
inductive hypothesis. For r = n + 1, we have that either s ∈ JΦ2Kλ, and we fall
back to the previous case, or s ∈ JΦ2K∩ JOWnKλ, and in particular s ∈ JWnKλ(1),
Thus by inductive hypothesis s, λ |= Φ2 ∧ OU(Φ1, Φ2)).

6 All together now

Recall that with our logics we aim to state properties about the single snap-
shots of a sequence, detailing their changes along time. The Quantified Spatio-
Temporal Logic (QSTL) is obtained just by the combination of all the operators
introduced so far, thus quantifying “globally” along the whole length of a trace.

Definition 13. The formulae Φ of QSTL are given by the grammar

Φ ::= true | a | x | x = y | ¬Φ | Φ∧Φ | ~ρ Φ[Φ] | ~ρ Φ[Φ] | OΦ | U(Φ,Φ) | ∃x.Φ

Definition 14. Let T be a spatio-temporal model. The semantics of a QSTL
formula Φ with respect to a point s ∈ S, a substitution η : V ⇀ P ] S, and a
temporal trace λ ∈ Λ0 is given by the rules

– s, η, λ |= true

– s, η, λ |= a if a ∈ λ0(s)
– s, η, λ |= xP if s ∈ λ0(η(xP ))
– s, η, λ |= xS if s = η(xS)
– s, η, λ |= x = y if η(x) = η(y)
– s, η, λ |= ¬Φ if s, η, λ 6|= Φ
– s, η, λ |= Φ1 ∧ Φ2 if s, η, λ |= Φ1 and s, η, λ |= Φ2

– s, η, λ |= ~ρ Φ1[Φ2] if there exists a spatial path ss1 . . . sn in T such that
sn, η, λ |= Φ1 and sj , η, λ |= Φ2 for all j = 1 . . . n− 1

– s, η, λ |= ~ρ Φ1[Φ2] if there exists a spatial path s0 . . . sn−1s in T such that
s0, η, λ |= Φ1 and sj , η, λ |= Φ2 for all j = 1 . . . n− 1

– s, η, λ |= OΦ if 1 < l(λ) and s, η, λ(1) |= Φ
– s, η, λ |= U(Φ1, Φ2) if there exists k < l(λ) such that s, η, λ(k) |= Φ2 and
s, η, λ(j) |= Φ1 for all j = 0 . . . k − 1

– s, η, λ |= ∃xP .Φ if there exists a proposition a1 such that s, η[a1/x], λ |= Φ
– s, η, λ |= ∃xS .Φ if there exists a point s1 such that s, η[s1/x], λ |= Φ



We can now combine the denotational mappings seen before to get J·Kη,λ,
and to finally obtain our concluding result.

Proposition 7. Let T be a spatio-temporal model, s ∈ S a point, λ ∈ Λ0 a
temporal trace, and Φ a QSTL formula. Then s,⊥, λ |= Φ iff s ∈ JΦK⊥,λ.

Example 3. We shall now discuss a scenario where all the features of the language
are needed. This example is aimed at tracking the identity of objects along the
temporal axis. As said in Remark 7, quantifiers on atomic propositions are used
to assign labels in order to identify entities, being these points or regions. In
Example 2 these labels represent connected components. In this case, instead,
we assume that, for each ghost, the spatio-temporal model encodes the identity
of each “lifespan” (the time between a character first appears on the screen, and
the moment it is caught, or the game finishes) via a unique atomic proposition.
In other terms, for each ghost and each lifespan, a separate atomic proposition
always identifies all the pixels that the ghost occupies on screen.

We use this idea to define a logic formula φ that is true at the pixels of the
orange ghost, in the current state, if and only if such ghost will be caught by Pac-
Man in a subsequent state. We shall use the derived operator “somewhere” de-
fined as Fφ = ~ρφ[true], obtaining orange∧∃xP .xP∧U(true,F(xP∧ ~Npacman)).
Note that, if the formula is true at a point s, then that point is orange, and there
is an atomic proposition xP which holds in s, thus, by construction, it represents
the identity of the current ghost. Furthermore, by definition of U, such atomic
proposition is still true at some point s′ of the space, in some future state, with
s′ in contact with a point of Pac-Man, which entails that the ghost is caught in
the same sense of Example 1.

7 Conclusions and future works

We developed a quantified spatio-temporal logic, and showed how this can be
used to state spatial properties, possibly involving the identity of individuals, in
models that evolve along time. The logic thus represents a significant improve-
ment in expressivity with respect to SLCS [16]. Differently from [10], we adopted
linear time operators and an operational semantics based on finite traces. We
also introduced a denotational semantics and proved its equivalence with the
operational one. Despite its simplicity, the Pac-Man example clarifies the useful-
ness of the logic in applicative domains such as video stream analysis and lesion
tracking in medical imaging.

Concerning future works, we plan to investigate decidability and axiomatisa-
tions of the logic. Bisimilarity and minimisation of models can be also of interest,
akin to the work for SLCS in [15]. As far as applications are concerned, we will
aim at developing a prototype spatial model checker combining temporal and
existential operators, and to use it in medical imaging case studies.
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A Some hints from quantified modal algebras

This appendix recalls basic notions of (quantified) modal and conjugate algebras,
which inspired the way we provided our logics with a denotational semantics.

A.1 Boolean and modal algebra

We recall the basics of boolean and modal algebras and discuss some axioms.

Definition 15. A Boolean algebra A is a 6-tuple 〈A,∨, 0,∧, 1,¬〉 such that the
triples 〈A,∨, 0〉 and 〈A,∧, 1〉 are ACI (associative, commutative and with iden-
tity) monoids satisfying the usual distributivity and negation rules.

The usual negation rule means that a ∨ ¬a = 1 and a ∧ ¬a = 0. A Boolean
algebra is equivalently described as a complemented distributive lattice. In par-
ticular a ∨ b = a iff a ∧ b = b and a ≤ b iff ¬b ≤ ¬a. The partial order on A is
induced by a ≤ b if a ∨ b = b, so that 0 is bottom and 1 is top. A well-known
example of such a structure is the boolean algebra of powersets of a set, that
gives rise to the algebra A = 〈P(A),∪, ∅,∩, A,c 〉. We say that a Boolean algebra
A is complete if every subset of A has a least upper bound (LUB).

Definition 16. A modal algebra M is a 7-tuple 〈A,∨, 0,∧, 1,¬,♦〉 such that
the 6-tuple 〈A,∨, 0,∧, 1,¬〉 is a Boolean algebra and ♦ : A → A is a function
satisfying ♦0 = 0 and ♦(a ∨ b) = ♦a ∨ ♦b.

A modal algebra is complete if the underlying Boolean algebra is complete
and ♦(

∨
i ai) =

∨
i ♦ai for any i.

Monotonicity of ♦ is implied by the second axiom, which also yields that
♦1 = 1. If M is finite (i.e. the set A is finite), then M is obviously complete.

We define the usual derived operator �a = ¬♦¬a. Note that �1 = 1, �a∧b =
�a ∧�b, and � is monotone with respect to the induced partial order



Remark 9. Modal algebras provide denotational models for propositional modal
logics. Assuming a semantical function [·] mapping a formula into an element of
the modal algebra chosen as model, the formula φ is valid in the logics if [φ] = 1.
Also, note that [φ =⇒ ρ] = 1 is equivalent to prove that [φ] ≤ [ρ], assuming
that [·] preserves the operators ¬ and ∨ (hence, all the operators).

It is immediate that the axiom K, i.e. �(φ =⇒ ρ) =⇒ (�φ =⇒ �ρ),
holds in any modal algebra. By Boolean manipulation the formula is equivalent
to (�φ ∧ (�(φ =⇒ ρ)) =⇒ �ρ. Hence, it suffices to prove that in a modal
algebra it holds (�a∧�(a =⇒ b)) ≤ �b. Due to the distributivity of �, this is
equivalent to prove that �(a ∧ b) ≤ �b, which holds by monotonicity.

Also, note that what is called the necessitation rule for modal logics based
on K holds, since a = 1 implies �a = �1 = 1.

Definition 17. LetM be a modal algebra whose partial order is ≤. Its necessity
and iteration axioms are M = a ≤ ♦a, 4 = ♦♦a ≤ ♦a, and B = a ≤ �♦a.

Axioms are given in terms of the ♦ operator, but they can be rewritten using
the � operator, with the reversed inequality. Hence, M and 4 can be equivalently
expressed in terms of � as �a ≤ a and �a ≤ ��a, respectively, as well as B is
equivalent to ♦�a ≤ a. Note that assuming M and 4 implies that ♦♦a = ♦a.

Remark 10. Axioms M , 4, and B are known as reflexivity, transitivity, and sym-
metry axioms, respectively, since for modal algebras arising from Kripke frames
those are the properties imposed on the underlying relation [?]. Modal algebras
satisfying M and 4 are called closure algebras and are models of S4, while those
satisfying all three axioms are called monadic algebras and are models of S5.

A.2 Quantified modal algebras

While modal algebras represent models for propositional modal logics, moving
to first order quantification require the introduction of cylindric operators, a
well-known abstraction for existential quantifiers [?].

Cylindric operators. We fix a Boolean algebra A and a set of variables V .

Definition 18 (cylindric Boolean algebras). A cylindric operator ∃ over A
and V is a family of monotone operators ∃x : A→ A indexed by elements in V
such that for all a, b ∈ A and x, y ∈ V it holds a ≤ ∃xa, ∃x∃ya = ∃y∃xa, and
∃x(a ∧ ∃xb) = ∃xa ∧ ∃xb.

Let a ∈ A. The support of a is the set of variables sv(a) = {x | ∃xa 6= a}.
An element of the algebra stands for a formula possibly containing free vari-

ables. We restrict our attention to elements a with finite support, i.e., such that
sv(a) is finite: this means that a is a formula containing a finite set of variables.

Now we fix a modal algebra M with underlying Boolean algebra A.

Definition 19 (cylindric modal algebras). A cylindric operator ∃ over M
and V is a cylindric operator over A and V such that for all a ∈ A and x ∈ V
it holds ∃x♦a = ♦∃xa.



Remark 11. The inequalities ∃x♦a ≥ ♦∃xa and ∃x♦a ≤ ♦∃xa are known as
Barcan formula and converse Barcan formula in the literature [?]. The axiom in
Definition 19 is thus only one of the possible choices, and it boils down to require
what is called “domain preservation”, namely, the domain is preserved along the
evolution. Instead, ∃x♦a ≤ ♦∃xa witnesses a possible domain restriction, while
analogously we may have a domain increase with the reverse ∃x♦a ≥ ♦∃xa.

The axiom implies sv(♦a) ⊆ sv(a), since ∃xa = a implies ∃x♦a = ♦∃xa = ♦a.

Soft modal algebras. We now show how to build a modal algebra that admits
cylindric operators. Let us fix a modal algebra M with underlying Boolean
algebra A and a set of variables V .

Proposition 8. Let D be a set of elements, F the set of functions η : V → D,
and Γ the set of functions γ : F → A . The 7-tuple F = 〈Γ,∨, 0,∧, 1,¬,♦〉
is a modal algebra, whose operators and constants are lifted from M. If M is
complete, so is F .

For example, 0 in F is the function such that 0(η) = 0 for all η, and so on.
In particular, note that γ1 ≤ γ2 means that γ1(η) ≤ γ2(η) for all η.

Let us now additionally fix a set D, and given η : V → D, we denote as
η[d/x] the function coinciding with η except for x, where η[d/x](x) = d.

Proposition 9. Let D be finite. The cylindric operator ∃ over F and V is
defined as (∃xγ)(η) =

∨
d∈D γ(η[d/x]).

If M is complete, the finiteness of D can be dropped.

Remark 12. By definition, ∃xγ = γ means that for all η we have
∨
d∈D γ(η[d/x]) =

γ(η), which is equivalent to say that for all d we have γ(η[d/x]) = γ(η). Intu-
itively, if γ represents a formula possibly containing free variables, x cannot be
among them. Conversely, x ∈ sv(γ) if there is a function η and elements b, c ∈ D
such that γ(η[b/x]) 6= γ(η[c/x]), intuitively meaning that x does occur free in γ.

A.3 Conjugate modal algebras

Algebras that employ more than one modal operator are said to be multimodal.
We focus here on a particular kind of such algebras, called conjugate algebras.

Definition 20. A conjugate algebra D is a 8-tuple 〈A,∨, 0,∧, 1,¬,♦1,♦2〉 such
that both 7-tuples 〈A,∨, 0,∧, 1,¬,♦1〉 and 〈A,∨, 0,∧, 1,¬,♦2〉 are modal algebras
and moreover it holds a ≤ �1♦2a ∧�2♦1a.

A conjugate algebra is complete if both the underlying modal algebras are so.

What is noteworthy is a well-known characterisation via just the ♦ operators.

Lemma 3. D is a conjugate algebra iff it holds ♦1a ∧ b = 0⇔ a ∧ ♦2b = 0.

Remark 13. The lemma is stated by using the more standard notion of the axiom
on ♦. An alternative, friendlier version is ♦1a ≤ b ⇔ a ≤ �2b. The proof of
the equivalence between the two axioms is straightforward, and it exploits the
following law holding in Boolean algebras, namely a ∧ b = 0 iff a ≤ ¬b.
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1 Introduction

Quantum computing has the potential to transform various computing appli-
cations, such as cryptography [24], deep learning [8], optimization [12], and
solving linear systems [17], by offering the ability to solve problems that are
currently infeasible for classical computing, such as Shore’s fast algorithm for
integer factoring and Grover’s fast algorithm for finding a datum in an unsorted
database. However, quantum computing is counter-intuitive and distinct from
classical computing, which makes it challenging to design and implement quan-
tum protocols, algorithms, and programs accurately. Therefore, it is crucial to
ensure their correctness through verification. While existing formal verification
techniques can be used to verify that classical systems enjoy some desired prop-
erties, they cannot be directly applied to quantum systems due to the distinct
principles used in quantum computing [27]. Therefore, new formal verification
techniques are necessary for quantum systems.
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An extension of Quantum Logic [9] called Dynamic Quantum Logic (DQL)
can be utilized to describe specifications of quantum programs. So far, various
quantum protocols, such as Superdense Coding [6], Quantum Teleportation [5],
Quantum Secret Sharing (Quantum Information Splitting) [19], Entanglement
Swapping [28], and Quantum Gate Teleportation [14] have been verified using a
DQL called the Logic of Quantum Programs (LQP) [1,2] (see [4] for a compre-
hensive review of DQL). However, these protocols were only verified manually
by giving their correctness proofs, and it has not been known how to automate
this process.

This paper presents an automated approach to quantum program verification
in Basic Dynamic Quantum Logic (BDQL). BDQL is a simplified version of DQL,
reflecting its essential features from an implementation perspective. We first for-
malize quantum states, quantum gates, and projections in bra-ket notation and
use a set of laws from quantum mechanics and matrix operations to reason on
quantum computation. This formalization is adopted from symbolic reasoning
in [11]. The advantage of this symbolic reasoning is that we use bra-ket notation
instead of explicitly complex vectors and matrices as is proposed in [22], which
makes our representations more compact. Moreover, we can deal not only with
concrete values but also with symbolic values for complex numbers reasoning.
We then formalize the semantics of BDQL in order to describe the behavior and
desired properties of quantum programs. We use Maude [10], a high-performance
specification/programming language based on rewriting logic [20], to implement
our approach. The symbolic reasoning on quantum computation and the seman-
tics of BDQL are formalized by means of equations in Maude. Therefore, formal
verification of quantum programs in BDQL is conducted automatically through
a simplification process with respect to the equations in Maude.

Using our support tool, we successfully verify the correctness of five quantum
protocols: Superdense Coding, Quantum Teleportation, Quantum Secret Sharing
(Quantum Information Splitting), Entanglement Swapping, and Quantum Gate
Teleportation. This demonstrates the effectiveness of our automated approach to
verify quantum programs in BDQL with symbolic reasoning adopted from [11]
in practice. The support tool and case studies are available at https://github.
com/canhminhdo/DQL.

2 Basic Dynamic Quantum Logic

In this section, we formulate Basic Dynamic Quantum Logic (BDQL). It is possi-
ble to describe and verify at least the five specific protocols in Section 3. Because
the five protocols are utilized for more complex protocols, BDQL is a sufficiently
expressive logic as a starting point. Further extensions of our BDQL will be
required to verify other protocols in the future.

Let L0 be a set of atomic formulas and Π0 be a set of atomic programs. The
set L of all formulas in BDQL and the set Π of all star-free regular programs
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are generated by simultaneous induction as follows:

L ∋ A :: = p | ¬A | A ∧A | [a]A,

Π ∋ a :: = skip | abort | π | a ; a | a ∪ a | A?,

where p ∈ L0 and π ∈ Π0. The symbols skip and abort are called constant
programs. The operators ;, ∪, and ? are called sequential composition, non-
deterministic choice, and test, respectively.

The syntax of BDQL is exactly the same as that of Propositional Dynamic
Logic (PDL) [16] without the Kleene star operator ∗. It is not strange that
two different logics have the same syntax. For example, Classical Logic and
Intuitionistic Logic have the same syntax but are distinguished by their semantics
(or their sets of provable formulas). Similarly, the semantics of BDQL and that
of the star-free fragment of PDL are different. This paper considers only star-free
regular programs, leaving the addition of ∗ to the logic in a future paper.

We define the semantics of BDQL using frames and models as usual. This
kind of semantics is called Kripke (or relational) semantics.

– A quantum dynamic frame is a pair F = (H, v) that consists of a Hilbert
space H and a function v from Π0 to the set U(H) of all unitary operators
on H. The function v is called an interpretation for atomic programs.

– A quantum dynamic model is a triple M = (H, v, V ) that consists of a
quantum dynamic frame (H, v) and a function V from L0 to the set C(H)
of all closed subspaces of H. The function V is called an interpretation for
atomic formulas.

The definition of quantum dynamic models states that atomic formulas are
interpreted as a closed subspace of a Hilbert space. This interpretation is known
as the algebraic semantics for Quantum Logic [9]. The set C(H) is called a
Hilbert lattice [23] because it forms a lattice with meet X ∩Y and join X ⊔Y =
(X⊥∩Y ⊥)⊥ for any X,Y ∈ C(H), where ⊥ denotes the orthogonal complement.
Note that X ⊔ Y ⊇ X ∪ Y and X ∪ Y /∈ C(H) in general.

Remark 1. Usually, Kripke frames are defined as a pair (tuple) that consists of
a non-empty set S and relation(s) R on S. On the other hand, the quantum
dynamic frames defined above have no relation(s). However, the relations can be
recovered immediately using v. That is, the family {Rπ : π ∈ Π0} of relations
on H is constructed by

Rπ = {(s, t) : (v(π))(s) = t}

for each π ∈ Π0. For this reason, we use the word “frame” for quantum dynamic
frames.

The interpretation v is defined for atomic programs, and V is defined for
atomic formulas. These interpretations are extended to that for star-free regular
programs and formulas, respectively. For any quantum dynamic model M , the
function [[ ]]M : L→ C(H) and family {RMa : a ∈ Π} of relations on H are defined
by simultaneous induction as follows:
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1. [[p]]M = V (p);
2. [[¬A]]M is the orthogonal complement of [[A]]M ;
3. [[A ∧B]]M = [[A]]M ∩ [[B]]M ;
4. [[[a]A]]M = {s ∈ H : (s, t) ∈ RMa implies t ∈ [[A]]M for any t ∈ H};
5. RMskip = {(s, t) : s = t};
6. RMabort = ∅;
7. RMπ = {(s, t) : (v(π))(s) = t};
8. RMa;b = {(s, t) : (s, u) ∈ RMa and (u, t) ∈ RMb for some u ∈ H};
9. RMa∪b = RMa ∪RMb ;

10. RMA? = {(s, t) : P[[A]]M (s) = t}, where P[[A]]M stands for the projection onto
[[A]]M .

Theorem 1. [[ ]]M is well-defined. That is, [[A]]M ∈ C(H) for each A ∈ L.

Proof. See Appendix.

The function [[ ]]M and family {RMa : a ∈ Π} are uniquely determined if M
is given. Recall that v(π) is a function. On the other hand, RMa is a relation and
may not be a function due to ∪.

Now we can understand the meaning of each program: skip does nothing,
abort forces to halt without executing subsequent programs, ; is the composi-
tion operator, ∪ is the non-deterministic choice operator, and ? is the quantum
test operator and is used to represent a result of projective measurement (see
Section 3.1).

Henceforth, we write (M, s) |= A for the condition s ∈ [[A]]M as usual. That
is, (M, s) |= A if and only if P[[A]]M (s) = s. A formula A is said to be satisfiable
(resp. valid) if (M, s) |= A for some (resp. any) M and s ∈ H.

Remark 2. In most modal logics, a contradiction A ∧ ¬A is not satisfiable. In
other words, not (M, s) |= A ∧ ¬A for any s. On the other hand, A ∧ ¬A is
satisfiable in BDQL because (M,0) |= A ∧ ¬A, where 0 stands for the origin
(zero vector) of H. LQP [2] chooses different semantics from that in this paper
to avoid this. That is, 0 (or the corresponding subspace {0}) is not a state in the
semantics of LQP. Unlike LQP, we allow 0 to be a state; otherwise, our definition
is ill-defined (Theorem 1 does not hold).

The following theorem gives the theoretical background for rewriting the
statement of the form (M, s) |= A in implementation explained in Section 4.

Theorem 2. The following holds for any M and s ∈ H.

1. (M, s) |= A ∧B if and only if, (M, s) |= A and (M, s) |= B.
2. (M, s) |= [skip]A if and only if (M, s) |= A.
3. (M, s) |= [abort]A.
4. (M, s) |= [π]A if and only if (M, (v(π))(s)) |= A.
5. (M, s) |= [a ; b]A if and only if (M, s) |= [a][b]A.
6. (M, s) |= [a ∪ b]A if and only if (M, s) |= [a]A ∧ [b]A.
7. (M, s) |= [A?]B if and only if (M,P[[A]]M (s)) |= B.

Proof. Straightforward.
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3 Application to Quantum Program Verification

This section describes the behavior and desired properties of some specific quan-
tum programs in the language of BDQL. These properties can be verified auto-
matically using our support tool as shown in Section 4 and 5.

3.1 Basic Notions

In the beginning, we briefly review quantum computation and fix our notation.
We assume the readers have basic knowledge of linear algebra.

Generally speaking, quantum systems are formulated as complex Hilbert
spaces. However, for quantum computation, it is enough to consider specific
Hilbert spaces called qubit systems. An n-qubit system is the complex 2n-space
C2n , where C stands for the complex plane. Pure states in the n-qubit system
C2n are unit vectors in C2n . The orthogonal basis called computational basis in
the one-qubit system C2 is a set {|0⟩ , |1⟩} that consists of the column vectors
|0⟩ = (1, 0)T and |1⟩ = (0, 1)T , where T denotes the transpose operator. The
linear combinations |+⟩ = (|0⟩+ |1⟩)/

√
2 and |−⟩ = (|0⟩− |1⟩)/

√
2 of |0⟩ and |1⟩

are also pure states. In general, |ψ⟩ = c0 |0⟩+c1 |1⟩ represents a pure state in the
one-qubit system C2 provided that |c0|2 + |c1|2 = 1. This notation of vectors is
called bra-ket notation (also called Dirac notation). |ψ⟩ is called a ket vector. The
bra vector ⟨ψ| is defined as a row vector whose elements are complex conjugates
of the elements of the corresponding ket vector |ψ⟩. In the two-qubit system C4,
there are pure states that cannot be represented in the form |ψ1⟩ ⊗ |ψ2⟩ and
are called entangled states, where ⊗ denotes the tensor product (more precisely,
the Kronecker product). For example, the EPR state (Einstein-Podolsky-Rosen
state) |EPR⟩ = (|00⟩+ |11⟩)/

√
2 is an entangled state, where |00⟩ = |0⟩⊗|0⟩ and

|11⟩ = |1⟩ ⊗ |1⟩.
Quantum computation is represented by unitary operators (also called quan-

tum gates). There are various quantum gates. For example, the Hadamard gate
H and Pauli gates X, Y , and Z are typical quantum gates on the one-qubit
system C2 and are defined as follows:

H =
1√
2

(
1 1
1 −1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

Two typical quantum gates on the two-qubit system C4 are the controlled-X gate
(also called the controlled NOT gate) CX and the swap gate SWAP are defined
by

CX = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗X,

SWAP = CX(I ⊗ |0⟩⟨0| +X ⊗ |1⟩⟨1|)CX,

where I denotes the identity matrix of size 2 × 2. Measurement is a completely
different process from applying quantum gates. Here we roughly explain specific
projective measurements. For the general definition of projective measurement,
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see [21]. Observe that P0 = |0⟩⟨0| and P1 = |1⟩⟨1| are projections, respectively.
After executing the measurement {P0, P1}, a current state |ψ⟩ = c0 |0⟩ + c1 |1⟩
is transitioned into P0 |ψ⟩ /|c0| = c0 |0⟩ /|c0| with probability |c0|2 and into
P1 |ψ⟩ /|c1| = c1 |1⟩ /|c1| with probability |c1|2. There is no other possibility
because |c0|2 + |c1|2 = 1.

3.2 Standard Interpretation

To describe the quantum programs discussed in this paper, we fix

Π0 = {H(i), X(i), Y(i), Z(i), CX(i, j), SWAP(i, j) : i, j ∈ N, i ̸= j},
L0 = {p(i, |ψ⟩), p(i, i+ 1, |Ψ⟩) : i ∈ N, |ψ⟩ ∈ C2, |Ψ⟩ ∈ C4},

where N stands for the set of all natural numbers (including 0). Because now
atomic programs and atomic formulas are restricted, we only need to consider
specific interpretations called the standard interpretations v̄ and V instead of v
and V , respectively. The standard interpretations are defined below.

A function v̄ : Π0 → U(C2n) is called the standard interpretation on C2n for
atomic programs if

v̄(H(i)) = I⊗i ⊗H ⊗ I⊗n−i−1, v̄(X(i)) = I⊗i ⊗X ⊗ I⊗n−i−1,

v̄(Y(i)) = I⊗i ⊗ Y ⊗ I⊗n−i−1, v̄(Z(i)) = I⊗i ⊗ Z ⊗ I⊗n−i−1,

v̄(CX(i, j)) = I⊗i ⊗ |0⟩⟨0| ⊗ I⊗n−i−1

+ (I⊗i ⊗ |1⟩⟨1| ⊗ I⊗n−i−1)(I⊗j ⊗X ⊗ I⊗n−j−1),

v̄(SWAP(i, j)) = v̄(CX(i, j) ; CX(j, i) ; CX(i, j)),

where

I⊗i =

i︷ ︸︸ ︷
I ⊗ · · · ⊗ I .

That is, under the standard interpretation, H(i), X(i), Y(i), Z(i) execute the
corresponding quantum gate on the i-th qubit, CX(i, j) executes the Pauli gate
X on the target qubit (j-th qubit) depending on the state of the control qubit
(i-th qubit), and SWAP(i, j) swaps the i-th and j-th qubits.

A function V : L0 → C(C2n) is called the standard interpretation on C2n for
atomic formulas if

V (p(i, |ψ⟩)) = C2i ⊗ span{|ψ⟩} ⊗ C2n−i−1

,

V (p(i, i+ 1, |Ψ⟩)) = C2i ⊗ span{|Ψ⟩} ⊗ C2n−i−2

,

where span{|ψ⟩} (resp. span{|Ψ⟩}) stands for the subspace spanned by {|ψ⟩}
(resp. {|Ψ⟩}).
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|0⟩ H Xb2 Zb1 H |b1⟩
|0⟩ |b2⟩

Encoding Decoding

Fig. 1: Superdense Coding

In what follows, we write Mn for (C2n , v̄, V ), where the index n represents
the number of qubits. In addition, we use the following abbreviation to conven-
tionally describe quantum programs in BDQL:

if A then a else b fi = (A? ; a) ∪ (¬A? ; b).

This program means the selection depends on the outcomes of projective mea-
surement. That is, execute a or b depending on the result of the measurement
{P[[A]]M , P[[¬A]]M }. Because projective measurement occurs only in quantum com-
putation, the behavior of this selection command is different from the usual
(classical) if then else fi program.

3.3 Case Studies

Superdense Coding

Superdense Coding [6] allows us to transmit two classical bits using an entangled
state. It consists of encoding and decoding the information. The encoding process
of information 00, 01, 10, or 11 is described as follows:

encode00 = H(0) ; CX(0, 1), encode01 = H(0) ; CX(0, 1) ; X(0),

encode10 = H(0) ; CX(0, 1) ; Z(0), encode11 = H(0) ; CX(0, 1) ; X(0) ; Z(0).

The decoding process is described as decode = CX(0, 1) ; H(0).
The desired property for Superdense Coding is that “the encoded information

is correctly decoded.” In BDQL, this property is expressed as follows:

(M2, |0⟩ ⊗ |0⟩) |=
∧

i,j∈{0,1}
[encodeij ; decode](p(0, |i⟩) ∧ p(1, |j⟩)).

Quantum Teleportation

Quantum Teleportation [5] is a protocol for teleporting an arbitrary pure state by
sending two bits of classical information. The program of Quantum Teleportation
is described as follows:

teleport = H(1) ; CX(1, 2) ; CX(0, 1) ; H(0)

; if p(1, |0⟩) then skip else X(2) fi

; if p(0, |0⟩) then skip else Z(2) fi.
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|ψ⟩ H

|0⟩ H

|0⟩ X Z |ψ⟩

Fig. 2: Quantum Teleportation

|ψ⟩ H

|0⟩ H

|0⟩ H

|0⟩ X Z Z |ψ⟩

Fig. 3: Quantum Secret Sharing

The desired property of Quantum Teleportation is that “a pure state |ψ⟩ is
correctly teleported.” In BDQL, this property is expressed as follows:

(M3, |ψ⟩ ⊗ |0⟩ ⊗ |0⟩) |= [teleport]p(2, |ψ⟩).

Quantum Secret Sharing

Quantum Secret Sharing (Quantum Information Splitting) [19] is a protocol for
teleporting a pure state from a sender (Alice) to a receiver (Bob) with the help
of a third party (Charlie). By this protocol, a secret pure state is shared between
Alice and Bob, provided that Charlie permits it. The program of Quantum Secret
Sharing is described as follows:

share = H(1) ; CX(1, 2) ; CX(0, 1) ; H(0) ; CX(2, 3) ; H(2)

; if p(1, |0⟩) then skip else X(3)) fi

; if p(0, |0⟩) then skip else Z(3) fi

; if p(2, |0⟩) then skip else Z(3) fi.

The desired property of secret sharing is similar to that of Quantum Tele-
portation. In BDQL, this property is expressed as follows:

(M4, |ψ⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩) |= [share]p(3, |ψ⟩)).

Entanglement Swapping

Entanglement Swapping [28] is a protocol for creating a new entangled state.
Suppose that Alice and Bob share two entangled qubits, and Bob and Charlie
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|0⟩ H

|EPR⟩
|0⟩ H

|0⟩ H

|0⟩ X Z

Fig. 4: Entanglement Swapping

also share two different entangled qubits. After executing Entanglement Swap-
ping, Alice’s qubit and Charlie’s qubit become entangled. The program of En-
tanglement Swapping is described as follows:

entangle = H(0) ; CX(0, 1) ; H(2) ; CX(2, 3) ; CX(1, 2) ; H(1)

; if p(2, |0⟩) then skip else X(3) fi

; if p(1, |0⟩) then skip else Z(3) fi

; SWAP(1, 3).

The last SWAP(1, 3) is executed to adjoin the remaining qubits.
The desired property of Entanglement Swapping is that “an entangled state

(in this case, |EPR⟩) is created.” In BDQL, this property is expressed as follows:

(M4, |0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩) |= [entangle]p(0, 1, |EPR⟩).

Note that SWAP(1, 3) is needed because p(i, i + 1, |Ψ⟩) is only defined for the
consecutive numbers i and i + 1. That is, the expression p(0, 3, |EPR⟩) is not
defined.

Quantum Gate Teleportation

Quantum Gate Teleportation [14] is a protocol for teleporting a quantum gate.
The program of quantum gate teleportation is described as follows:

gteleport = H(1) ; CX(1, 2) ; H(3) ; CX(3, 4) ; CX(3, 2) ; CX(0, 1) ; H(0) ; CX(4, 5) ; H(4)

; if p(0, |0⟩) then skip else Z(2) ; Z(3) fi

; if p(1, |0⟩) then skip else X(2) fi

; if p(5, |0⟩) then skip else X(2) ; X(3) fi

; if p(4, |0⟩) then skip else Z(3) fi.

The desired property of Quantum Gate Teleportation is that “a quantum gate
(in this case, CX) is correctly teleported.” In BDQL, this property is expressed
as follows:

(M6, |ψ⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |ψ′⟩) |= [gteleport]p(3, 4,CX(|ψ′⟩ ⊗ |ψ⟩)).
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|ψ⟩ H

|0⟩ H

|0⟩ X Z Z
|ψ′′⟩

|0⟩ H X X Z

|0⟩ H

|ψ′⟩

Fig. 5: Quantum Gate Teleportation (|ψ′′⟩ = CX(|ψ′⟩ ⊗ |ψ⟩))

4 Implementation of Basic Dynamic Quantum Logic

This section describes the implementation of BDQL in Maude [10], a specifica-
tion/programming language based on rewriting logic [20]. Hence, the notations
used in this section follow the Maude syntax.

4.1 Syntax of Basic Dynamic Quantum Logic

We formalize pure states in a program as a collection of qubits associated with
indices that start from 0 to N−1, where N is the total number of qubits. Hence,
we can flexibly refer to a specific part of a quantum state using indices. We adopt
this formalization to reason on quantum computation from [11].

We define two sorts AtomicProg and Prog for atomic programs Π0 and
star-free regular programs Π in BDQL, respectively, where AtomicProg is a
subsort of Prog. We also define several operators for atomic programs as follows:
sorts AtomicProg Prog .
subsort AtomicProg < Prog .
ops I(_) H(_) X(_) Y(_) Z(_) : Nat −> AtomicProg [ctor] .
op CX(_,_) : Nat Nat −> AtomicProg [ctor] .

where I(_), H(_), X(_), Y(_), Z(_) operators take a natural number as
input, denoting the index of a qubit of a pure state on which the quantum gates
I, H, X, Y , Z, will be applied, respectively; and CX(_,_) operator takes two
natural numbers as inputs, denoting the indices of two qubits of a pure state on
which CX will be applied. These operators serve as the constructor of atomic
programs with the ctor attribute.

We use several operators to define star-free regular programs in BDQL as
follows:
ops abort skip : −> Prog [ctor] .
op _;_ : Prog Prog −> Prog [ctor assoc id: skip prec 25] .
op _U_ : Prog Prog −> Prog [ctor] .
op _? : Formula −> Prog [ctor prec 24] .
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where all operators follow the definition of star-free regular programs in BDQL
shown in Section 2; besides that, the skip operator also denotes an empty pro-
gram; ctor, assoc, id:_, and prec_ are operator attributes for a constructor,
associativity, an identity element, and operator precedence, respectively.

We define two sorts AtomicFormula and Formula for atomic formulas
L0 and general formulas L in BDQL, respectively, where AtomicFormula is a
subsort of Formula. We also define several operators for constructing formulas
in DQL as follows:
sorts AtomicFormula Formula .
subsort AtomicFormula < Formula .
op P(_,_) : Nat Matrix −> AtomicFormula [ctor] .
op P(_,_,_) : Nat Nat Matrix −> AtomicFormula [ctor] .
op neg_ : Formula −> Formula .
op _/\_ : Formula Formula −> Formula [ctor comm assoc] .
op [_]_ : Prog Formula −> Formula [ctor] .

where Matrix is a family sort of quantum states, quantum gates, and projections
because they can be expressed in terms of matrices. The P(_,_) and P(_,_,_)
operators are atomic formulas representing projections of the forms p(i, |ψ⟩)
and p(i, j, |Ψ⟩), respectively (see Section 3.2). The other operators follow the
definition of formulas in BDQL as shown in Section 2.

The if-then-else-fi command corresponding to the program if then else fi
is implemented as follows:
op if_then_else_fi : Formula Prog Prog −> Prog .
eq if F1:Formula then P1:Prog else P2:Prog fi
= (F1:Formula ? ; P1:Prog) U ((neg F2:Formula) ? ; P2:Prog) .

4.2 Semantics of Basic Dynamic Quantum Logic

The semantics of (M, s) |= A in BDQL is represented by the term s |= A of
sort Judgment with the following operator.
sort Judgment .
op _|=_ : QState Formula −> Judgment .

where sort QState represents quantum states (more precisely, pure states).
The satisfiability of A ∧ B in BDQL is determined by that of A and B

(Theorem 2), each of which is represented by a judgment. Hence, we need a sort
to represent a set of judgments as follows:
sort JudgmentSet . subsort Judgment < JudgmentSet .
op emptyJS : −> JudgmentSet [ctor] .
op _/\_ : JudgmentSet JudgmentSet −> JudgmentSet [ctor assoc

comm id: emptyJS] .

where emptyJS is the empty set of judgments, and the operator _/\_ serves as
the constructor of the set (ctor), is associative (assoc), commutative (comm),
and has the empty set as an identity element (id: emptyJS).
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Now, we implement the semantics of BDQL using equations that simplify a
judgment s |= A into the set of judgments as follows:
vars PROG PROG’ : Prog . vars Q Q’ : QState .
vars N N1 N2 : Nat . var M : Matrix .
vars Phi Psi : Formula .
ceq Q |= P(N, M) = emptyJS if (Q).P(N, M) == Q .
ceq Q |= P(N1, N2, M) = emptyJS if (Q).P(N1, N2, M) == Q .
eq neg P(N:Nat, |0>) = P(N:Nat, |1>) .
eq neg P(N:Nat, |1>) = P(N:Nat, |0>) .
eq Q |= Phi /\ Psi = (Q |= Phi) /\ (Q |= Psi) .
eq Q |= [skip] Phi = Q |= Phi .
eq Q |= [abort] Phi = emptyJS .
eq Q |= [I(N)] Phi = Q |= Phi .
ceq Q |= [H(N)] Phi = Q’ |= Phi if Q’ := (Q).H(N) .
ceq Q |= [X(N)] Phi = Q’ |= Phi if Q’ := (Q).X(N) .
ceq Q |= [Y(N)] Phi = Q’ |= Phi if Q’ := (Q).Y(N) .
ceq Q |= [Z(N)] Phi = Q’ |= Phi if Q’ := (Q).Z(N) .
ceq Q |= [CX(N1,N2)] Phi = Q’ |= Phi if Q’ := (Q).CX(N1,N2) .
ceq Q |= [PROG’ ; PROG] Phi = Q |= [PROG’]([PROG] Phi)
if PROG’ =/= nil /\ PROG =/= nil .
eq Q |= [PROG’ U PROG] Phi
= (Q |= [PROG’] Phi) /\ (Q |= [PROG] Phi) .
ceq Q |= [P(N,M)?] Phi = Q’ |= Phi if Q’ := (Q).P(N,M) .

where var and vars keywords are used to declare variables of some sorts. The
first two equations define the semantics of the atomic formulas p(i, |ψ⟩) and
p(i, i + 1, |Ψ⟩), where i denotes the index at which the projections will take
place and |ψ⟩ , |Ψ⟩ are used to construct their projection operators in the forms
of |ψ⟩⟨ψ| , |Ψ⟩⟨Ψ |, respectively. Recall that (M, |ψ⟩) |= p(i, |ψ⟩) if and only if
P[[p(i,|ψ⟩)]]M (|ψ⟩) = |ψ⟩. The next two equations define the negation of atomic
formulas p(i, |0⟩) and p(i, |1⟩). It is not necessary to implement the negation of
the other formulas for conducting the experiments in Section 5. The next equa-
tion reflects the semantics of conjunction. Based on Theorem 2, the remaining
equations simulate skip, abort, quantum gates (I, H, X, Y , Z, and CX), ;
(composition), ∪ (choice), and ? (test). Note that A? is implemented only for
A = p(i, |ψ⟩) because the other more complex test operators are not needed for
conducting the experiments in Section 5. For the sake of simplicity, we do not
mention how we implement the behavior of quantum gates and projections in
detail to make the paper concise.

Let us suppose that ESR and EBDQL are the sets of equations used for sym-
bolic reasoning on quantum computation adopted from [11] and the semantics
of BDQL specified in Maude, respectively. Now we have enough facilities to
check whether (M, s) |= A by simplifying s |= A →∗

ESR∪EBDQL
emptyJS. Indeed,

(M, s) |= A if s |= A is simplified to emptyJS with respect to ESR ∪ EBDQL.
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Table 1: Experimental results with our support tool for the five case studies

Protocol Qubits Rewrite Steps Time

Superdense Coding 2 2,659 1ms

Quantum Teleportation 3 2,558 1ms

Quantum Secret Sharing 4 7,139 3ms

Entanglement Swapping 4 5,344 2ms

Quantum Gate Teleportation 6 56,901 37ms

5 Experiments

This section shows how to use our support tool to verify Quantum Teleportation
in Maude as an example and similarly for other protocols, which can be fully
found at https://github.com/canhminhdo/DQL. Subsequently, we provide the
experimental results for five protocols used in the experiments.

Let TELEPORT be the specification of Quantum Teleportation, initQState
be the initial state for TELEPORT and qubitAt be the function to get a single
qubit at some index. We can verify the correctness of Quantum Teleportation
with our support tool using the reduce command in Maude as follows:
reduce in TELEPORT : initQState |= [

H(1) ; CX(1, 2) ; CX(0, 1) ; H(0) ;
if P(1, |0>) then skip else X(2) fi ;
if P(0, |0>) then skip else Z(2) fi

] P(2, qubitAt(initQState, 0)) .

The reduce command will conduct the simplification process with respect to the
equations specified in our tool automatically. The command returns emptyJS
in just a few moments, and thus the correctness of Quantum Teleportation is
verified using our support tool, the implementation of BDQL in Maude, where
the first qubit at index 0 of the initial quantum state is teleported correctly in
the third qubit at index 2 of the final quantum state.

We conducted experiments on an iMac that carries a 4 GHz microproces-
sor with eight cores and 32 GB memory of RAM. The experimental results are
shown in Table 1. We successfully verified the correctness of Superdense Cod-
ing, Quantum Teleportation, Quantum Secret Sharing (Quantum Information
Splitting), Entanglement Swapping, and Quantum Gate Teleportation accord-
ing to the properties described in Section 3. For all case studies from two to
six qubits used, we can quickly verify their correctness in just a few moments
using our support tool, although the number of rewrite steps involved is quite
large. Without the aid of computer programs, such as our support tool, these
results would have been almost impossible. This demonstrates the effectiveness
of our automated approach for verifying quantum programs in BDQL using the
symbolic approach adopted from [11].
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6 Related Work

Quantum Hoare Logic (QHL) by [25] was designed and intended to be a quan-
tum counterpart of Hoare Logic. From the perspective of logic, BDQL can ex-
press more fundamental components of quantum programs compared to QHL:
the if · · ·fi statement that represents a non-deterministic measurement cannot
be divided anymore in QHL. On the other hand, BDQL can express its non-
deterministic feature explicitly using the choice operator ∪. Also, QHL lacks the
test operator in its syntax.

In this paper, we chose Maude as our implementation language. On the other
hand, [13] was implemented in PRISM (Probabilistic symbolic model checker)
for verifying quantum protocols. Unlike our approach, [13] needs to enumerate
states and calculate the state transitions in advance and then encode them into
a specification. In contrast, our approach does not require such enumeration of
states in advance because we formalize the quantum computation and the seman-
tics of BDQL by means of equations, and the verification problem is conducted
automatically through an equational simplification process in Maude.

7 Conclusions and Future Work

We have presented the implementation of BDQL, a simplified version of DQL,
in Maude for quantum program verification. The symbolic reasoning from [11] is
adopted, and we have formalized the semantics of BDQL by means of equations.
The verification problem is simplified using the reduce command in Maude
with respect to the equations specified in our support tool. Using our support
tool, we have successfully verified the five quantum programs. This demonstrates
the effectiveness of our automated approach for verifying quantum programs in
BDQL using symbolic reasoning.

At least two future extensions remain to be addressed. That is, our tool (and
BDQL) is limited in that (I) it cannot deal with programs including the Kleene
star operator (iteration operator) and that (II) it cannot deal with quantitative
properties regarding measurement probability. As to (I), it is significant to ex-
tend our tool so that it can deal with the Kleene star operator for expressing
quantum loop programs [26]. As to (II), a DQL called the Probabilistic Logic
of Quantum Programs (PLQP) that can express the quantitative properties has
been proposed and applied to formal verification of the quantum search algo-
rithm, Quantum Leader Election, and the BB84 quantum key distribution pro-
tocol [3,7]. However, their verification was done manually, and their automation
by a tool is still an open problem.
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Appendix

Proof of Theorem 1

Before embarking on the proof of Theorem 1, we show a lemma.

Lemma 1. The following holds for any M :

1. [[[skip]A]]M = [[A]]M ;
2. [[[abort]A]]M = H;
3. [[[abort; b]A]]M = [[[abort]A]]M ;
4. [[[skip; b]A]]M = [[[b]A]]M ;
5. [[[(a ; b) ; c]A]]M = [[[a ; (b ; c)]A]]M ;
6. [[[(a ∪ b) ; c]A]]M = [[(a ; c) ∪ (b ; c)]A]]M ;
7. [[[a ; b]A]]M = [[[a][b]A]]M ;
8. [[[a ∪ b]A]]M = [[[a]A]]M ∩ [[[b]A]]M ;
9. [[[B?]A]]M = [[B → A]]M ∈ C(H), where B → A denotes the Sasaki hook [18]

defined as ¬(A ∧ ¬(A ∧B)).

Proof. 1 to 8 are easy to show. For 9, some knowledge of Hilbert space theory
is required. Observe that [[[B?]A]]M is the inverse image P−1

[[B]]M
([[A]]M ) of [[A]]M

under P[[B]]M . That is,

[[[B?]A]]M = P−1
[[B]]M

([[A]]M ) = {s ∈ H : P[[B]]M (s) ∈ [[A]]M}
= {s ∈ H : P[[A]]MP[[B]]M (s) = P[[B]]M (s)}.

Therefore, [[[B?]A]]M = [[B → A]]M ∈ C(H) (see [15]).

We use Lemma 1 to prove Theorem 1 without mentioning it.

Proof. We prove by simultaneous structural induction on formulas in BDQL
and star-free regular programs. The case A = p ∈ L0 is immediate. The cases
A = ¬B and A = B∧C follow from the basic fact in Hilbert space theory. Thus,
we only discuss the case A = [a]B.
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Case 1 a = skip. We have [[[a]B]]M = [[B]]M ∈ C(H) by the induction hypoth-
esis [[B]]M ∈ C(H).

Case 2 a = abort. We have [[[a]B]]M = H ∈ C(H).
Case 3 a = π ∈ Π0. Observe that [[[a]B]]M is the inverse image of [[B]]M under

v(a). In other words, [[[a]B]]M is the image (v(a)†)([[B]]M ) of [[B]]M under the
adjoint operator v(a)† of v(a). Let X⊥ be the orthogonal complement of a
subspace X of H, and write X⊥⊥ for (X⊥)⊥. Recall that X ∈ C(H) if and
only if X⊥⊥ = X. By the induction hypothesis [[B]]M ∈ C(H),

([[[a]B]]M )⊥⊥ = ((v(a)†)([[B]]M ))⊥⊥ = ((v(a)†)(([[B]]M )⊥))⊥

= (v(a)†)(([[B]]M )⊥⊥) = (v(a)†)([[B]]M ) = [[[a]B]]M .

Consequently, [[[a]B]]M ∈ C(H).
Case 4 a = b ; c. We further split the case with respect to b.

Case 4.1 b = skip. [[[a]B]]M = [[[c]B]]M ∈ C(H) by the induction hypothesis
[[[c]B]]M ∈ C(H).

Case 4.2 b = abort. [[[a]B]]M = [[[abort]B]]M = H ∈ C(H).
Case 4.3 b = π. [[[a]B]]M = [[[π][c]B]]M . By the induction hypothesis, [[[c]B]]M ∈

C(H). Thus, it follows from the similar argument of case 3 above that
[[[a]B]]M ∈ C(H).

Case 4.4 b = b1 ; b2.

[[[a]B]]M = [[[b1 ; (b2 ; c)]B]]M = [[[b1][b2 ; c]B]]M ∈ C(H)

by the induction hypothesis [[[b1][b2 ; c]B]]M ∈ C(H).
Case 4.5 b = b1 ∪ b2.

[[[a]B]]M = [[[(b1 ; c) ∪ (b2 ; c)]B]]M = [[[b1 ; c]B]]M ∩ [[[b2 ; c]B]]M ∈ C(H)

by the induction hypothesis [[[b1 ; c]B]]M , [[[b2 ; c]B]]M ∈ C(H).
Case 4.6 b = C?.

[[[a]B]]M = [[[C?][c]B]]M = [[C → [c]B]]M ∈ C(H)

by the induction hypothesis [[C]]M , [[[c]B]]M ∈ C(H).
Case 5 a = b∪c. We have [[[a]B]]M = [[[b]B]]M∩[[[c]B]]M ∈ C(H) by the induction

hypothesis [[[b]B]]M , [[[c]B]]M ∈ C(H).
Case 6 a = C?. We have [[[C?]B]]M = [[C → B]]M ∈ C(H) by the induction

hypothesis [[B]]M , [[C]]M ∈ C(H).
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